In today’s urban schools, it has been a challenge for teachers to fully engage all students throughout the lesson. In the absence of authentic student engagement, students are not learning the standards that teachers are working feverishly to teach; thus, they have low achievement scores on standardized assessments. In this article, you will discover strategies that have been utilized to support student engagement for older students. Click the image to the right to read the article.
K-8 Science - Mrs. Angela Rowe-Jackson

Writing in efforts for students to earn a score of 12!

The 2022-2023 TDOE Writing Rubrics

Remember, the IZone ELA team is here to help with Writing in efforts for students to earn a score of 12!

K-8 Science - Mrs. Angela Rowe-Jackson

M.A.D. Scientists at Work
Masters of 5E with Ambition and Determination

Addressing Students’ Misconceptions

Science Anchor Charts - Part 2

Anchor charts are versatile and appropriate for your students no matter their age or academic level. Anchor charts can be customized to support many different concepts and skills. Involving your students in the creation of these charts will make your lesson even more meaningful. When getting students to create an anchor chart, be sure to create a rubric for them to follow and/or consider making your own exemplar model of what you expect to be in their anchor charts.

You may also consider using your CCC (Cross-Cutting Concepts), in particular, cause and effect, as the basis for creating your anchor charts. Cause-and-effect lessons teach one of the most fundamental understandings a student must have in order to understand the world around us!

Click here for a great read on how to incorporate the use of CCC-cause and effect in the creation of anchor charts.

"Together we are ONE in SCIENCE!"

High School - Dr. William Kinard

Discussion Protocol

As IZone 2.0 educators, we all strive for double-digit gains in each tested subject area. Therefore, it is imperative that all students are engaged in every component of each lesson. Discussion protocols are critical in promoting student engagement and must be varied, even when providing feedback. The discussion protocol, “Praise, Question, Suggestion”, can be used in any content area where student work needs improvement. The sole purpose of the protocol is to offer critiques and feedback to improve student work. The most optimal environment in which to use the “Praise, Question, Suggestion” protocol is in a peer-centered setting. However, it can be used in whole-group settings with teachers and students also. When used with students, only, the students should be arranged in small groups of no more than four. To maximize the implementation of this protocol, teachers should first model the protocol and provide samples, checklists, questions, and discussion stems for students. Click here to see the “Praise, Question, Suggestion” protocol in action!

K-8 Math - Mr. Romond Arnold

Mathematical Practice #1

Hello IZone 2.0 Mathematicians,

The Standards for Mathematical Practice, sometimes called the math practice standards, are part of the Common Core. These Standards will help your students think mathematically, conceptualize math, and become better problem solvers.

Make Sense of Problems & Persevere in Solving Them (MP#1)

Mathematical Practice 1 serves as a way for students to structure their thinking and communication about a problem they need to solve.

A mathematically proficient student should be able to explain the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. For example, young students might use concrete objects or pictures to show the actions of a problem, such as counting out and joining two sets to solve an addition problem. If students do not initially make sense of a problem or see a way to begin, they ask questions that will help them get started. As they work, they continually ask themselves, “Does this make sense?” When they find that their solution pathway does not make sense, they look for a plausible pathway.

Middle school students “may analyze problem conditions and goals, translating, for example, verbal descriptions into mathematical expressions, equations, or drawings as part of the process. They consider analogous problems and try special cases and simpler forms of the original problem to gain insight into its solution.” - Quick Reference Guide: Standards for Mathematical Practice Grades 6-8.

Tip: Students need to focus on the math used to solve problems instead of the answers. When solving problems, make sure students can identify the following:

• What the question is asking
• The relevant information in the problem
• The irrelevant information in the problem
• An entry point to solve problem (If one entry point does not work, students should be able to identify another entry point to solve the problem)
• Whether or not their solution makes sense in the context of the problem.

“Out Front Where We Belong!”