
Lesson 11.1 Circumference and Arc Length

©Big Ideas Learning, LLC

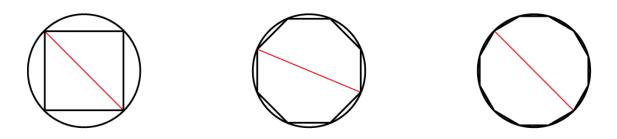
Find the measure of the arc.

• Learning Target:

Understand circumference, arc length, and radian measure.

Success Criteria:

- I can use the formula for the circumference of a circle to find measures.
- I can find arc lengths and use arc lengths to find measures.
- I can solve real-life problems involving circumference.
- I can explain radian measure and convert between degree and radian measure.

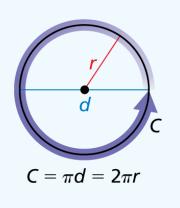


Vocabulary

circumference, *p. 582* arc length, *p. 583* radian, *p. 585*

Using the Formula for Circumference

The **circumference** of a circle is the distance around the circle. Consider a regular polygon inscribed in a circle. As the number of sides increases, the polygon approximates the circle, and the ratio of the perimeter of the polygon to the diameter of the circle approaches $\pi \approx 3.14159...$


For all circles, the ratio of the circumference *C* to the diameter *d* is the same. This ratio is $\frac{C}{d} = \pi$. Solving for *C* yields the formula for the circumference of a circle, $C = \pi d$. Because d = 2r, where *r* is the radius, you can also write the formula as $C = \pi(2r) = 2\pi r$.

Circumference of a Circle

The circumference *C* of a circle is $C = \pi d$ or $C = 2\pi r$, where *d* is the diameter of the circle and *r* is the radius of the circle.

EXAMPLE 1 Using the Formula for Circumference

Find each indicated measure.

- **a.** circumference of a circle with a radius of 9 centimeters
- **b.** circumference of a circle with a radius of 26 meters

SOLUTION

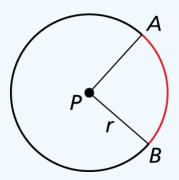
1. Find the circumference of a circle with a diameter of 5 inches.

1 I do not understand.

SELF-ASSESSMENT

2. Find the circumference of a circle with a radius of 17 feet.

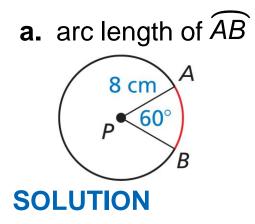
STUDY TIP Just as the terms *point*, *line*, and *plane* are undefined, the distance around a circular arc is another example of an undefined geometric term.


Using the Formula for Circumference

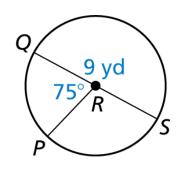
An **arc length** is a portion of the circumference of a circle. You can use the measure of the arc (in degrees) to find its length (in linear units).

Arc Length

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

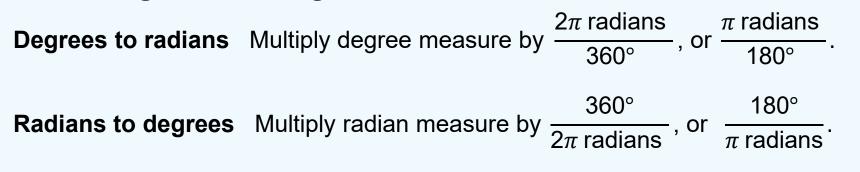

 $\frac{\text{Arc length of } \widehat{AB}}{2\pi r} = \frac{\widehat{mAB}}{360^{\circ}}, \text{ or}$ Arc length of $\widehat{AB} = \frac{\widehat{mAB}}{360^{\circ}} \cdot 2\pi r$

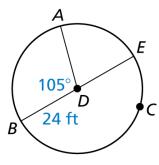
Find each indicated measure.


3. Describe the difference between an arc measure and an arc length.

SELF-ASSESSMENT

Find the indicated measure.


4. arc length of \widehat{PQ}


Converting between Degrees and Radians

Mini-Assessment

- **1.** circumference of $\bigcirc D$
- **2.** arc length of *AB*
- **3.** You ride your bicycle 42 feet. The diameter of each wheel on your bicycle is 18 inches. How many complete revolutions does the front wheel make?
- 4. Convert 210° to radians.

5. Convert
$$\frac{5\pi}{12}$$
 radians to degrees.

