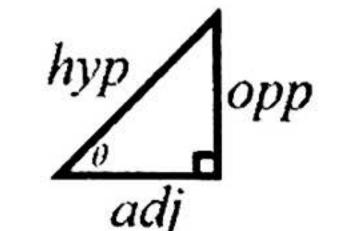
Formula Favorites – These types are used at least once per test.

SohCahToa $sin(\theta) = \frac{opp}{r}$



$$\cos(\theta) = \frac{adj}{hyp}$$

$$\tan(\theta) = \frac{opp}{adj}$$

Slope

$$m \perp = \text{opposite}$$
reciprocal
 $m \parallel = \text{same}$

Slope-Intercept form

$$y = m \cdot x + b$$
slope y-int
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope Formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

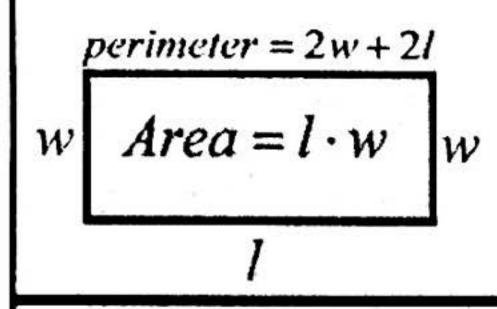
m = undefined

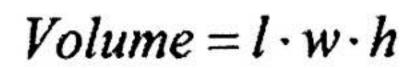
$$ax + by = c$$

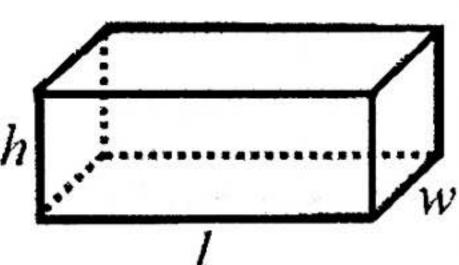
$$m = \frac{-a}{b}$$

m = 0

Rectangles







Mean (average)

- Add up the terms
- Divide by the # of terms

Median

- Order the terms
- Find the middle term

Most common term

Scalene

Acute

Exponent Rules

1.
$$x^2 \cdot x^3 = x^{2+3}$$

$$2.\left(x^2\right)^3 = x^{2\cdot 3}$$

3.
$$\frac{x^7}{x^4} = x^{7-4}$$

4.
$$x^0 = 1, x \neq 0$$

5.
$$x^{-2} = \frac{1}{x^2}$$

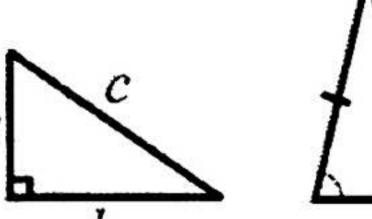
RESPONDED FOR THE RESPONDED FOR

(-4,5)

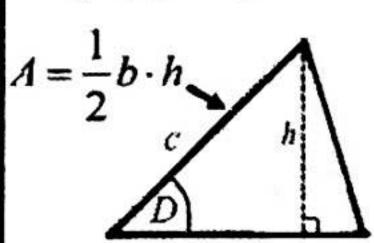
$$6.(x)^{2/3} = \sqrt[3]{x^2}$$

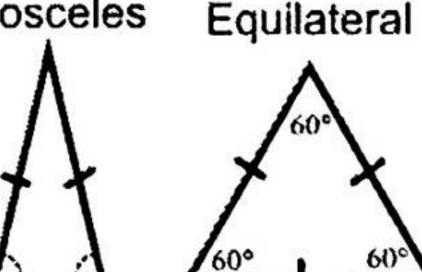
Triangles

Right



Pythagorean Th. $a^2 + b^2 = c^2$

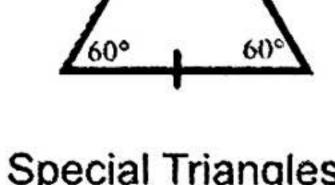




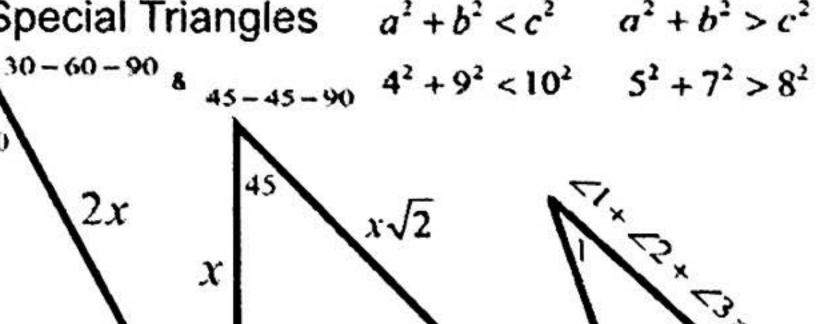
Isosceles

 $x\sqrt{3}$

2x



Special Triangles



Obtuse $a^2 + b^2 < c^2$

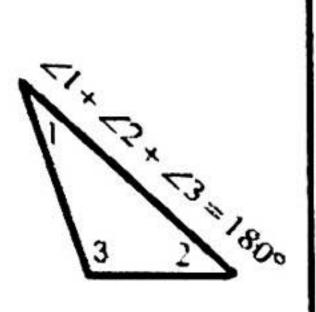
Scalene

Obtuse

Acute $a^2 + b^2 > c^2$

$$a^2 + b^2 > c^2$$

 $5^2 + 7^2 > 8^2$

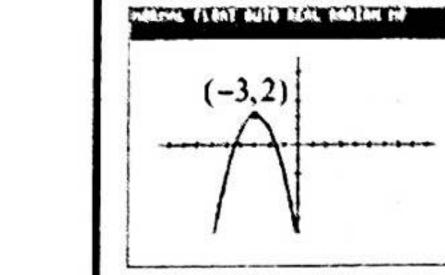


SAS Area formula

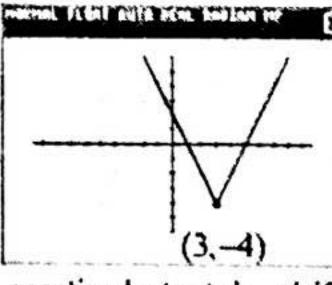
$$A = \frac{1}{2} \cdot b \cdot c \cdot \sin(D)$$

Domain(x - values) Transformations

& Range
$$(y - values)$$
 $y = -(x+3)^2 + 2$



reflect through x-axis, shift left 3, shift up 2



vertical stretch, shift right 3, shift down 4

If (x, y) maps to

(kx,ky) and

(2,5) maps to

(8,20). Then,

(3,7) maps to?

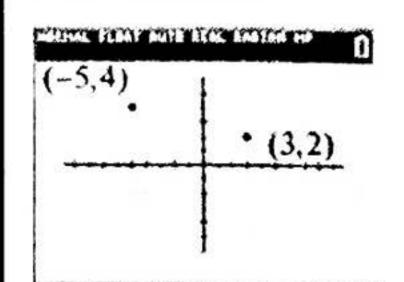
answer: (12,28)

(3.5, -5)domain: $-4 < x \le 3.5$ range: $-5 \le y < 5$

Somewhat Common Formulas – These types are seen on over half of the tests.

(3,2)

Distance



Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(3 - (-5))^2 + (2 - 4)^2}$$

$$d = \sqrt{64 + 4}$$

$$a^2 + b^2 = c^2$$

$$8^2 + 2^2 = d^2$$

$$68 = d^2$$

$$d = \sqrt{68}$$
$$d = 2\sqrt{17}$$

while field only been bening to

(-5,4)

$$a^{2} + b^{2} = c^{2}$$

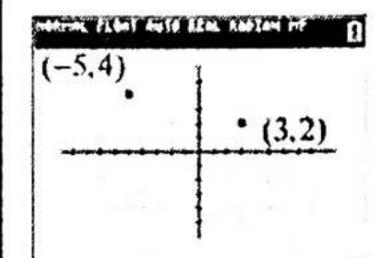
$$8^{2} + 2^{2} = d^{2}$$

$$68 = d^{2}$$

$$d = \sqrt{68}$$

$$d = 2\sqrt{17}$$

Midpoint

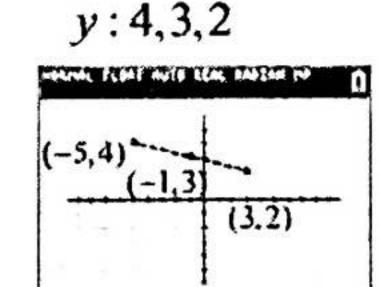


Midpoint Formula

$$(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{-5 + 3}{2}, \frac{4 + 2}{2}\right)$$
$$= \left(-1, 3\right)$$

$$x:-5,-1,3$$

$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{-5 + 3}{2}, \frac{4 + 2}{2}\right)$$

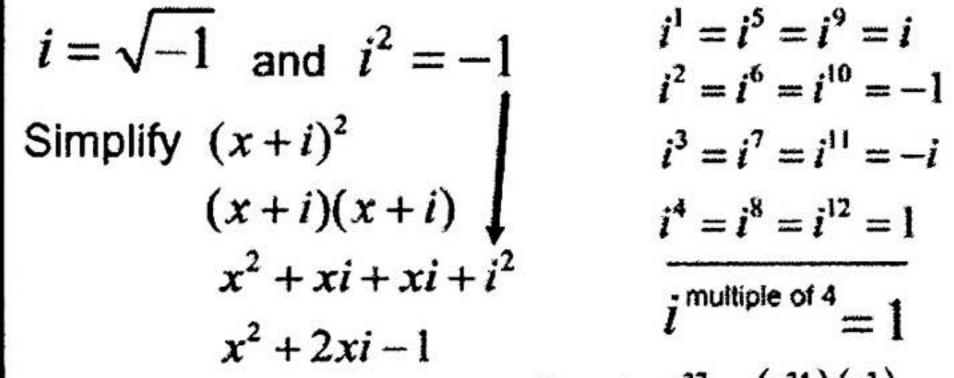


Midpoint is just the

(average x, average y)

See the linear pattern?

Imaginary Numbers

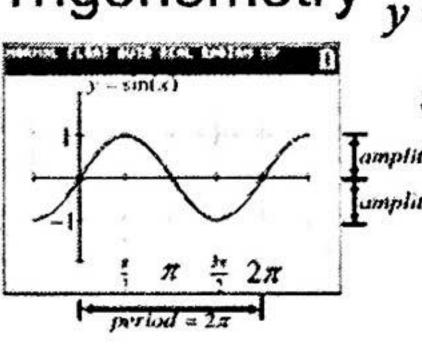


Powers of i

$$i^{1} = i^{5} = i^{9} = i$$
 $i^{2} = i^{6} = i^{10} = -1$
 $i^{3} = i^{7} = i^{11} = -i$
 $i^{4} = i^{8} = i^{12} = 1$
 $i^{multiple of 4} = 1$
ole: $i^{27} = (i^{24})(i^{3})$

Example:
$$i^{27} = (i^{24})(i^3)$$

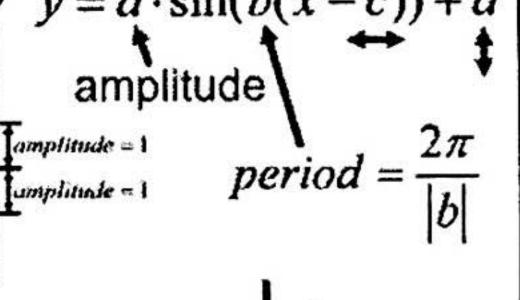
= $(1)(-i) = -i$



$$\sin^2(x) + \cos^2(x) = 1$$

$$180^{\circ} = \pi \ radians$$

Trigonometry $y = a \cdot \sin(b(x-c)) + d$



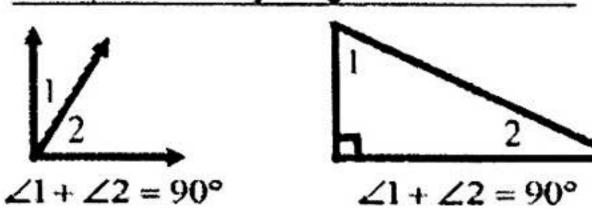
$$S + A + C +$$

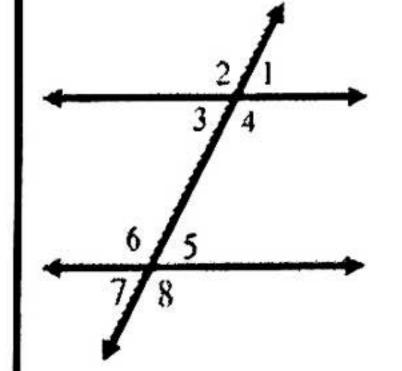
Angles

Parallel Lines cut by a Transversal

- **Alternate Interior** $\angle 3 \cong \angle 5$ and $\angle 4 \cong \angle 6$
- Same Side Interior

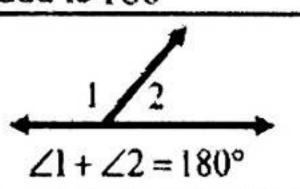
Complementary Angles add to 90°



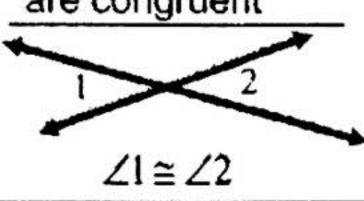


- $\angle 4 + \angle 5 = 180^{\circ}$ and $\angle 3 + \angle 6 = 180^{\circ}$
- **Alternate Exterior** $\angle 2 \cong \angle 8$ and $\angle 1 \cong \angle 7$
- Corresponding $\angle 4 \cong \angle 8$ and $\angle 3 \cong \angle 7$

Supplementary Angles add to 180°

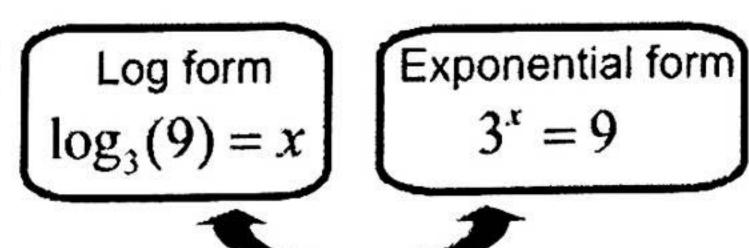


Vertical angles are congruent



Logarithm Rules

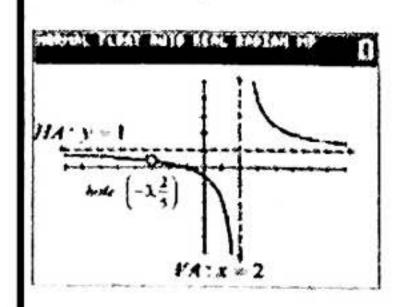
- 1. $\log_5(2) + \log_5(3) = \log_5(2 \cdot 3)$ 4. $\log_{5}(1) = 0$



- 2. $\log_5(2^3) = 3 \cdot \log_5(2)$
- 5. $\log_5(5) = 1$
- 3. $\log_5\left(\frac{2}{3}\right) = \log_5(2) \log_5(3)$
- 6. $\log_5(5^3) = 3$ 7. $5^{\log_5(3)} = 3$

Less Common Formulas – These types are seen on about 1 in every 2 or 3 tests.

Asymptotes



To find VA, set the denominator = zero

Vertical

and solve for xHole

If a factor cancels, it causes a hole instead of a VA

Asymptote (VA)

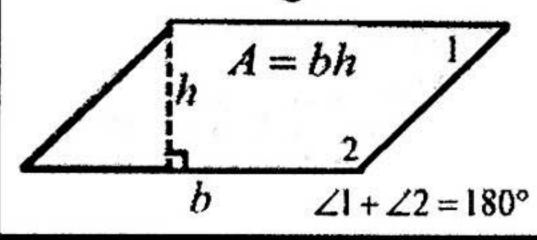
Horizontal Asymptote (HA)

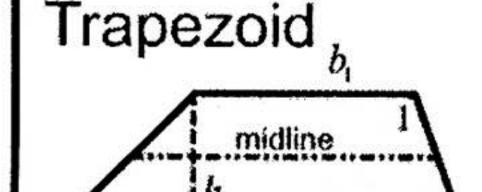
- 1. If bottomheavy degree, then HA at y = 0
- If topheavy degree, then there is no HA
- If same degree
 then divide the leading coefficients

Slant Asymptote

If the degree in the numerator is one more than the denominator, use long division to find the slant asymptote

Parallelogram



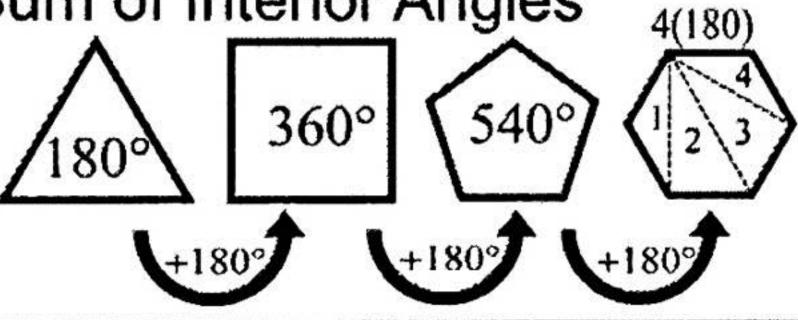


b,

Area = $\frac{1}{2}(b_1 + b_2) \cdot h$ = (avg. base) $\cdot h$ midline = $\frac{b_1 + b_2}{2}$ = (avg. base)

$$\angle 1 + \angle 2 = 180^{\circ}$$

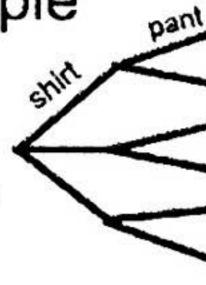
Sum of Interior Angles



Counting Principle

Jamie has 3 shirts and 2 pairs of pants.

How many different outfits can Jamie wear?



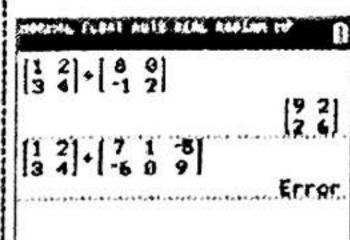
Draw a tree diagram or use the counting principle: (3)(2)=6

Matrices

Dimensions $row \times column$ 3×2 $\begin{bmatrix} 1 & 8 \\ -2 & 0 \end{bmatrix}$

• must have the same dimensions

Adding Matrices



Determinants

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - cb$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

det[[3 4]]

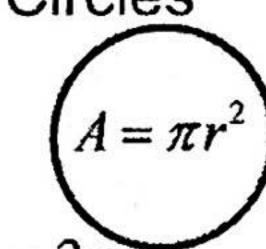
Multiplying Matrices

 inner dimensions must match

Augmented Matrices

$$2x - 3y = 10$$
$$-x + 8y = -5$$

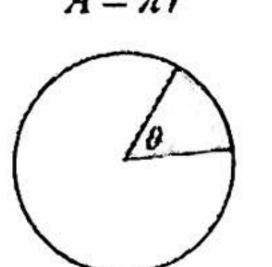
Circles



length = $\frac{\theta}{360}$ (circ.) $c = 2\pi r$

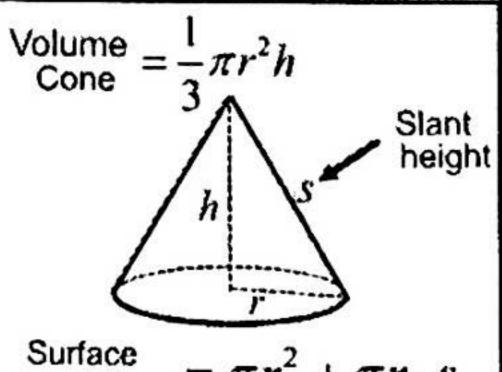
 $(x-h)^2 + (y-k)^2 = r^2$

$\frac{\text{area}}{\text{sector}} = \frac{\theta}{360} (area)$



lume - 2

 $_{\text{Cylinder}}^{\text{Volume}} = \pi r^2 \cdot$



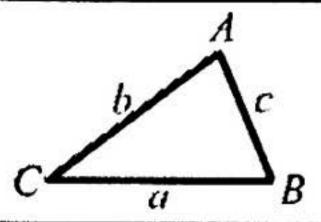
Surface Area Cone $= \pi r^2 + \pi r \cdot s$

TI PROFESSIONAL DEVELOPMENT

Uncommon Formulas – These types are seen on about 1 in every 4 tests.

Law of Sines

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$



Law of Cosines

$$c^2 = a^2 + b^2 - 2ab \cdot \cos(C)$$

Difference of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Sum of Cubes

$$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$$
 $a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{n}$$

Discriminant

$$discriminant = b^2 - 4ac$$

1. If
$$b^2 - 4ac > 0$$
, then 2 real solutions

2. If
$$b^2 - 4ac < 0$$
, then no real solutions

3. If
$$b^2 - 4ac = 0$$
, then 1 real solution

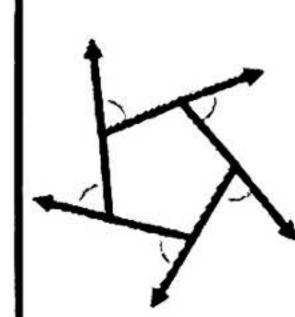
Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side

$$N0.2 + 5 < 8$$

No,
$$5 + 7 = 12$$

Sum of Exterior Angles



The sum of the exterior angles of any polygon is always 360°

Expected Value (on average)

What is the expected value for the sum of 2 dice rolls?

sum of 2 dice (x)	2	3	4	5	6	7	8	9	10	11	12
P(x)	1 36	36	3/36	36	<u>5</u> 36	<u>6</u> <u>36</u>	36	36	3/36	36	1 36

Expected =
$$p_1x_1 + p_2x_2 + p_3x_3 + ...$$

answer=7

Standard Deviation

Typical distance from the mean

Example: Which list has a larger standard deviation?

 $A: \{1,3,5,7,9,11\}$

 $B: \{2,2,2,10,10,10\}$

Answer: B, mean=6 for both, but list B is more spread out

Permutations (order matters)

Combinations

(order doesn't matter)

Example: There are 5 runners in a race.

- a. How many ways can you give out a gold, silver, and bronze medal? answer: P₁(5,3)
- b. How many different combinations of people could have a medal at the end of the race? answer: $_{n}C_{r}(5,3)$

Sequences

Arithmetic Sequences

$$\frac{16}{d} = -3 \quad \frac{13}{-3} \quad \frac{10}{-3} \quad \frac{7}{-3} \quad \frac{4}{-3}$$

$$a_n = a_1 + (n-1)d$$

Geometric Sequences

$$\frac{3}{r} - \frac{-6}{2} - \frac{12}{2} - \frac{24}{24} + \frac{48}{48} \dots$$

$$a_n = a_1 \cdot (r)^{n-1}$$

Recursive Sequences

$$a_n = (a_{n-1}) + 5$$
 where $a_1 = 6$
Previous Term

$$\frac{6}{a_1}$$
 $\frac{11}{a_2}$ $\frac{16}{a_3}$ $\frac{21}{a_4}$ $\frac{26}{a_5}$...

Miscellaneous topics: distance in complex plane, joint variation, multiplicity, tangent lines, simplifying using the conjugate, independent events, polar, vectors, prime numbers.