IMPORTANT UPDATE - all dates should be read as 2020; months and days stay same.

Don't fret, half of the packet is just reading resources!!
AP Biology Summer Assignment 2018/2019

Instructor: Chikezie O. Madu, Ph.D.

Text @wshapbio14 to (615)212-2686
To opt-out of messages at any time by replying, "unsubscribe@wshapbio14"

33% of overall Lab grade
Full Name:

Grade:

Contact Phone Number:

Responses must be typed, scanned, and emailed to cemadul@gmail.com

Deadline: 11:59 PM on 08/01/2018

****Hard copy will be turned in on the first day of the school year****

To contact instructor, email cemadu1@gmail.com. Please do not call or text.

Integrity Policy

“Plagiarism. Failure to acknowledge ideas, phrases, data, images, or other intellectual property gained from a preexisting body of work. This includes self-plagiarism, or the submission of one piece of work in more than one course without the explicit permission of the instructors involved.”

“Cooperative or collaborative effort in coursework without acknowledgment and explicit permission of the instructor. Assume that acknowledgement is necessary any time you collaborate and/or cooperate, unless you are expressly informed that it is not”.2

“Cheating. The submission of work as one’s own that has been prepared by another person.” 3

1-3-https://www.hamilton.edu/student-handbook/studentconduct/honor-code

“I affirm that I have not given or received any unauthorized help on this assignment, and that this work is my own.”

Signature___
This summer packet aims to address the Science Practices for AP Science Courses

Science Practice 1: You should be able to use representations and models to communicate scientific phenomena and solve scientific problems.
 1.1 You should be able to create representations and models of natural or man-made phenomena and systems in the domain
 1.2 You should be able to describe representations and models of natural or man-made phenomena and systems in the domain
 1.3 You should be able to refine representations and models of natural or man-made phenomena and systems in the domain
 1.4 You should be able to use representations and models to analyze situations or solve problems qualitatively and quantitatively
 1.5 You should be able to re-express key elements of natural phenomena across multiple representations in the domain.

Science Practice 2: You should be able to use mathematics appropriately
 2.1 You should be able to justify the selection of a mathematical routine to solve problems
 2.2 You should be able to apply mathematical routines to quantities that describe natural phenomena
 2.3 You should be able to estimate numerically quantities that describe natural phenomena

Science Practice 3: You should be able to engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course.
 3.1 You should be able to pose scientific questions
 3.2 You should be able to refine scientific questions
 3.3 You should be able to evaluate scientific questions

Science Practice 4: You should be able to plan and implement data collection strategies in relation to a particular scientific question.
 4.1 You should be able to justify the selection of the kind of data needed to answer a particular scientific question.
 4.2 You should be able to design a plan for collecting data to answer a particular scientific question
 4.3 You should be able to collect data to answer a particular scientific question
 4.4 You should be able to evaluate sources of data to answer a particular scientific question.

Science Practice 5: You should be able to perform data analysis and evaluation of evidence
 5.1 You should be able to analyze data to identify patterns or relationships
 5.2 You should be able to refine observations and measurements based on data analysis
 5.3 You should be able to evaluate the evidence provided by data sets in relation to a particular scientific question

Science Practice 6: You should be able to work with scientific explanations and theories
 6.1 You should be able to justify claims with evidence
 6.2 You should be able to construct explanations of phenomena based on evidence produced through scientific practices
 6.3 You should be able to articulate the reasons that scientific explanations and theories are refined or replaced
 6.4 You should be able to make claims and predictions about natural phenomena based on scientific theories and models.
 6.5 You should be able to evaluate alternative scientific explanations

Science Practice 7: The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains
 7.1 You should be able to connect phenomena and models across spatial and temporal scales
 7.2 You should be able to connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas
Dear AP Biology Students,
Welcome to AP Biology!

I am excited about working with you as you continue to expand your scientific understanding. Advanced Placement courses are reasonably arduous and AP Biology is no exception. We cover a two-semester college course in addition to a lab course. Occasionally, you will be asked to stretch yourself and some task will seem overwhelming. However, I will work with you to make it less stressful. While the course may be challenging, it will be worthwhile!

Your summer assignment begins by:

1. Sign up for REMIND 101 Text @wshapbio14 to (615)212-2686
2. Check out the class website- The summer assignment will be located there along with all links.

https://sites.google.com/site/wshsbio/
Read chapter 1 and 2 of Campbell and Reece's *Biology 9th edition, AP edition* textbook. And pay attention to the objectives included in the packet. A copy of the textbook can be found on my webpage and the link can be accessed through the school web page. Along with the assigned reading, you will be required to complete the guided reading and activities before August 1, 2016. You will take an assessment on this chapter and the entire packet the first Friday of the school year.

CHAPTER 1- INTRODUCTION: THEMES IN THE STUDY OF LIFE

After reading this chapter.

1. Briefly describe, in your own words, unifying themes that pervade the science of biology, and suggest why they are considered unifying themes.
2. Explain how the properties of life emerge from complex organization.
3. Describe five emergent properties associated with life, and suggest why they are essential.
4. Distinguish between holism and reductionism, using analogies.
5. Explain how technological breakthroughs contributed to the formulation of the cell theory and our current knowledge of the cell.
6. Using a Venn diagram, distinguish between prokaryotic and eukaryotic cells.
7. Explain, in your own words, what is meant by "form fits function." Describe five organs or cell that can be used to explain this.
8. List the five kingdoms of life and use a Venn diagram to compare and contrast them.
9. Distinguish between inductive and deductive reasoning using nonscientific and scientific examples.
10. Explain how science and technology are interdependent using several appropriate examples.

CHAPTER 2 THE CHEMICAL CONTEXT OF LIFE

After reading this chapter.

1. State four elements essential to life that make up 96% of living matter, and propose why they are essential.
2. Describe the structure of an atom and the importance the structure plays in its properties and function.
3. Explain how electron configuration influences the chemical behavior of an atom.
4. Define electronegativity and explain how it influences the formation of chemical bonds.
5. Distinguish among nonpolar covalent, polar covalent and ionic bonds using an analogy.
6. Describe the formation of a hydrogen bond and explain how it differs from a covalent or ionic bond.
7. Explain why weak bonds are important to living organisms and give an example of how it plays a role in life.
8. Describe how the relative concentrations of reactants and products affect a chemical reaction.
"Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scientific disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive." BIO2010 report of the National Research Council (2003)

Therefore, it is imperative that today's students develop and apply quantitative skills as part of their exploration into biology. A good grasp of quantitative methodology and reasoning is particularly important in the laboratory experience. Visit these websites and others you may find, and become familiar with the following statistic concepts:

1. Mean
2. Standard deviation
3. Standard error of mean
4. Chi square

https://www.youtube.com/watch?v=igqYISKoXak

http://www.bozemanscience.com/chi-squared-test/

http://www.bozemanscience.com/standard-deviation/

http://www.bozemanscience.com/standard-error/

You will take a quiz on this during the first week of school.
Article 1:

Does the Presence of Venomous Coral Snakes Affect Predation Rates on Their Mimics, Kingsnakes?

Introduction - The Article and Phenomenon Under Study

Many poisonous animals have warning coloration that signals to potential predators they are dangerous. Sometimes a harmless species, with warning coloration that mimics the dangerous species, benefits when predators confuse them with the harmful species. This phenomenon is called Batesian mimicry. Batesian mimicry should only be effective if predators have experience with the dangerous species. In order to test this mimicry hypothesis in nature, investigators designed field experiments with coral snakes and their mimics.

Article 2:

Can Diet Influence the Frequency of Birth Defects?

Introduction - The Article and Phenomenon Under Study

Birth defects that result from embryonic abnormalities in neural tube development include spina bifida and anencephaly. For decades, researchers have worked to understand possible causes of neural tube defects (NTDs), both genetic and environmental, and to develop health care practices to reduce their incidence. The British physician R.W. Smithells led pioneering work on possible prevention of NTDs by administration of vitamins to mothers around the time of conception.
Batesian mimicry involves the avoidance of predators by organisms that resemble other species with a deleterious effect. This type of mimicry is based on the evolutionary advantage of avoiding predation by adopting the appearance of a more dangerous species. The hypothesis was first formulated by F. Bates (1883) in his book "On the Origin of Species by Means of Natural Selection." Batesian mimicry is a form of mimicry where non-poisonous or weakly poisonous species mimic the warning signals of more toxic species. The mimicry is typically evolutionary in nature and can be seen in many animal species, from butterflies to birds and beyond. It is a form of adaptive radiation where species develop similar body forms or coloration to those of more dangerous species, allowing them to avoid predation. In the context of animal mimicry, the idea is that the presence of a more toxic species in the same habitat can reduce the predation rate of a similar, but non-toxic species. The study suggests that mimicry is not only about avoiding predators but also about improving the fitness of the mimic species. The presence of the more toxic species can act as a signal to predators,警示 them of the potential danger, thus reducing the risk of predation for the mimic species.
Guic!i.,g Questions for Reading This Article

A. About the Article

1. Give the name of the journal and the year in which the article was published.

2. What are the last names of the three authors? At what university was the work done?

3. Specialized vocabulary: Write a brief definition of each term.

 Defined in the article:

 Batesian mimicry

 Not defined in the article:

 sympatric
 allopatric

4. What type of organism is being studied? Give genus and species names, as well as common names, for two of the study species.

5. This study is designed to test what prediction of Batesian mimicry?

B. About the Study

6. From what materials did the investigators make the experimental models?

7. At each study site, investigators placed how many snake models of what three color patterns?

8. How many sympatric sites and how many allopatric sites were tested in North Carolina and South Carolina? How many sympatric sites and how many allopatric sites were tested in Arizona?

9. In Figure 1a, what is the x-axis? What is the y-axis? Which is the dependent variable? In Figure 1b, what is the x-axis and what is the y-axis?

10. What are the patterns of coral snake presence and absence by latitude and by elevation?

II. Hypothesis: Predators avoid Batesian mimics only in areas that are inhabited by the dangerous model.

 (a) Prediction (a) under this hypothesis: The proportion of total attacks on ringed replicas at latitudes where coral snakes are present will be \[\text{(higher? lower? no different?)} \] than at latitudes where coral snakes do not occur.

 (b) Prediction (b) under this hypothesis: The proportion of total attacks on ringed replicas at elevations where coral snakes are present will be \[\text{(higher? lower? no different?)} \] than at elevations where coral snakes do not occur.

12. Null hypothesis: There is no relationship between predator avoidance of Batesian mimics and presence of the dangerous model.

 (a) Prediction (a) under this null hypothesis: The proportion of total attacks on ringed replicas at latitudes where coral snakes are present will be \[\text{(higher? lower? no different?)} \] than at latitudes where coral snakes do not occur.
13. In Figure la, look at the proportion of total attacks on ringed replicas placed at different latitudes in North Carolina and South Carolina. In which areas are the attack rates on ringed replicas higher: in areas where coral snakes are present or in areas where coral snakes are absent?

14. Do the results in Figure la (#13) agree with prediction (a) under the null hypothesis?

15. Do the results in Figure la (#13) agree with prediction (a) under the null hypothesis?

16. The results in Figure la lead us to do which of these? (A) reject the hypothesis; (B) reject the null hypothesis.

17. In Figure lb, look at the proportion of total attacks on ringed replicas placed at different elevations. In which areas are the attack rates on ringed replicas higher: in areas where coral snakes are present or in areas where coral snakes are absent?

18. Do the results in Figure lb (#17) agree with prediction (b) under the null hypothesis?

19. Do the results in Figure lb (#17) agree with prediction (b) under the null hypothesis?

20. The results in Figure lb lead us to do which one of these? (A) Reject the hypothesis; (B) reject the null hypothesis; (C) agree with the hypothesis; (D) agree with the hypothesis.

21. Is this an observational study, in which quantitative, observational data are taken but no experimental manipulation is made, or is this an experimental study, in which researchers make manipulations by which the effects of different variables are tested, one at a time?

22. Is this a field study, with data collected on organisms in their natural habitat, or is this a lab study, in which animals are studied under controlled conditions in the laboratory?

23. This system to measure predation on model snakes allows us to test specific predictions about Batesian mimicry. It is possible that other factors, besides the advantages of mimicry, explain the results observed. Perhaps it is simply the combination of bright red, yellow, and black colors on the snake replicas—not the ringed pattern itself—that explains the difference in attack rates. How could investigators test that possibility?

24. What if a particular milk snake subspecies is a poor mimic of the coral snake? Make a prediction: If this test is repeated in a geographic area where the milk snakes do not resemble coral snakes at all, would more ringed replicas be attacked?

25. Imagine that you were a member of this research team and involved in these experiments. What could be a possible follow-up test that extends this work? Briefly state another experiment or measurement you would do within this research system.
Possible Prevention of Neural-Tube Defects by Periconceptional Vitamin Supplementation

R. W. Smithells S. Sheppard
Department of Paediatrics and Child Health, University of Leeds

M. J. Seller
Paediatric Research Unit, Guy's Hospital, London

N. C. Nevill
Department of Medical Genetics, Queen's University of Belfast

R. Harris A. P. Read
Department of Medical Genetics, University of Manchester

D. W. Fielding
Department of Paediatrics, Chester Hospitals

Summary

Women who had previously given birth to one or more infants with a neural tube defect (NTD) were recruited into a trial of periconceptional multivitamin supplementation. 1 of 178 infants had an NTD, compared with 13 of 260 infants from unselected mothers (5-0%),

INTRODUCTION

The well-known social class gradient in the incidence of neural-tube defects (NTD) suggests that nutritional factors might be involved in NTD etiology. A possible link between folate deficiency and NTDs if a man was first reported in 1965. More recently, significant sodal-class differences in dietary intake in the first trimester, and in first-trimester values for red cell folate, leucocyte ascorbic acid, and serum vita min A have been reported/dietary and biochemical \(A \)

Values being higher in classes I and II than in classes III, IV, and V. Furthermore, 7 mothers, of whom 6 subsequently gave birth to NTD infants, and one to an infant with unexplained micro-opthalmia, had first-trimester mean values for red cell folate and leucocyte ascorbic acid that were significantly lower than those of control infants.

These observations are compatible with the hypothesis that subclinical deficiencies of one or more vitamins contribute to the causation of NTDs. We report preliminary results of an intervention study in which mothers at increased risk of having NTD infants were offered periconceptional multivitamin supplements.

PATIENTS AND METHODS

Women who had had one or more NTD infants, or who were at greater risk of conceiving an NTD infant, were offered daily vitamin A 4000 IU., vitamin D 400 IU., thiamine 1.5 mg, riboflavin 1.5 mg, pyridoxine 1 mg, niacinamide 15 mg, ascorbic acid 40 mg, folic acid 0.36 mg, ferrous sulphate 30 mg, and calcium phosphate 480 mg, and continuing at the time of neural tube closure. Pregnanate Forte provides daily vitamin A 4000 L.U., vitamin D 400 L.U., thiamine 1.5 mg, riboflavin 1.5 mg, pyridoxine 1 mg, niacinamide 15 mg, ascorbic acid 40 mg, folic acid 0.36 mg, ferrous sulphate 30 mg, and calcium phosphate 480 mg.

RESULTS

187 control mothers have delivered 192 infants (including 5 twin pairs) without NTDs, and a further 38 mothers have normal amniotic-fluid alpha-fetoprotein (AFP) values (table). 13 mothers have been delivered of NTD infants/fetuses, 1

OUTCOME OF PREGNANCY IN FULLY SUPPLEMENTED AND COVITAMIN MOTHERS

<table>
<thead>
<tr>
<th>Outcome of Pregnancy</th>
<th>Fully Supplemented</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant with NTD</td>
<td>140(3)</td>
<td>126(3)</td>
</tr>
<tr>
<td>Subtotal (1)</td>
<td>141(3)</td>
<td>204(5)</td>
</tr>
<tr>
<td>Normal amniotic AFP</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>Subtotal (2)</td>
<td>167(3)</td>
<td>242(5)</td>
</tr>
<tr>
<td>Spontaneous abortion</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bxamined, NTD</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Ex.amined, no NTD</td>
<td>178(3)</td>
<td>260(5)</td>
</tr>
<tr>
<td>Subtotal (5)</td>
<td>188(3)</td>
<td>269(5)</td>
</tr>
</tbody>
</table>

AU riem. re x-cause to infants/fetuses included.

Figs. in parentheses indicate numbers of twin pairs included.
by spontaneous abortion, 11 by termination after covered lesion, normal AFP). 17 fetuses of a further 26 some control mothers who aborted spontaneously were examined and had no NTD. The provisional recurrence-rate of NTDs is 5.0% (13 in 260). 26 control mothers were at increased risk of NTD by virtue of having two previous NTDs. This might suggest that there is no evidence to support the hypothesis that a low recurrence rate has made these mothers unsuitable for supplementation. A group of women with a naturally low recurrence rate has unwittingly selected itself for supplementation. Therefore, 0.6% (1 in 178) of mothers have normal amniotic fluid and had no NTD. None of these mothers had an NTD. The last of the present series were examined; none had an NTD. The study was supported by the Crippled Children's Action Research Fund and Beecham Pharmaceuticals Ltd. We thank the women taking part in this study; medical colleagues who referred them, and Dr Jennifer He; comparable women, and the Children's Research Fund, and Beecham Pharmaceuticals Ltd. Reprints should be addressed to Dr. W. S., Department of Pediatrics and Child Health, University of Leeds, 27 Brunswick Street, Leeds LS1 3ET.

REFERENCES

Guiding Questions for Reading This Article

A. About the Article

1. Give the name of the journal and the year in which this article was published.

2. State the last name of the first author, his department, and his university.

3. Specialized vocabulary: Write a brief definition of each term.
 - **amniocentesis**
 - neural tube defects (NTDs)
 - periconceptional
 - placebo
 - vitamin

.8. About the Study

4. The authors paint out that the observed higher incidence of NTDs in lower social classes as compared to higher social classes might be due to what factors?

5. What criteria were used to select women for this study?

6. The control group consisted of whom?

7. How many mothers were in the fully supplemented group, and what was their treatment?

8. How did investigators treat data on women who conceived before taking the supplements for a month and those who missed some of the supplements?

9. In controlled experiments in general, the experimental group and the control group are alike in all factors except in the one being tested. In this study, the test factor is the nutritional supplement. (a) Some study centers used paired controls, in which a supplemented mother was paired for comparison with a control mother. What criteria were used for matching the pairs? (b) In this study, what are some other ways the supplemented mothers and the control mothers might have differed, besides whether or not they received the supplement?

10. From the table showing outcome of pregnancy in fully supplemented and control mothers, what is the difference in number of NTD infants between the supplemented and control groups? What was the difference in percentage of NTDs in the two groups of women?

11. The authors state that their data agree with the hypothesis that vitamin supplementation during the period around conception is associated with lower incidence of NTDs. In their Discussion section, they mention three alternative explanations for this association. Briefly list the three explanations in your own words.

C. General Conclusions and Extensions of the Work

12. Do you think the observed difference is significant enough to conclude that vitamin supplementation has prevented some NTDs in women who have previously had NTD infants? Do you think the results can be generalized to conclude that vitamin supplementation will prevent NTDs in all women? Why or why not?
13. In 1983, B. Umssett and J.C. Fletcher published a paper entitled "Do vitamins prevent neural tube defects (and can we find out ethically):" in the Hastings Center Report (13:508). They documented the early history of R. W. Smithells’s work on multivitamins and birth defects, including the paper in this exercise. They pointed out that, before beginning his studies in 1976, Smithells had requested approval from several ethics committees to do a "randomized, placebo-controlled" clinical trial, but his requests were refused. (a) How would the study procedures be different if trials were "randomized"? (b) What is a "placebo"? How would the study procedures be different with the use of placebos? (c) Why do you think the ethics committees denied Smithells’s request? Do you think they should have approved the research request?

14. Imagine that you were a member of the research team and involved in these investigations. What could be a possible follow-up test that extends this work?
Does DNA replication follow the conservative, semiconservative, or dispersive model?

EXPERIMENT At the California Institute of Technology, Matthew Meselson and Franklin Stahl cultured E. coli for several generations in a medium containing nucleotide precursors labeled with a heavy isotope of nitrogen, 15N. They then transferred the bacteria to a medium with 14N, a lighter isotope. A sample was taken after DNA replicated once; another sample was taken after DNA replicated again. They extracted DNA from the bacteria in the samples and then centrifuged each DNA sample to separate DNA of different densities.

<table>
<thead>
<tr>
<th>Results</th>
<th>DNA sample centrifuged after first replication</th>
<th>DNA sample centrifuged after second replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria cultured in medium with 15N (heavy isotope)</td>
<td>@ Bacteria</td>
<td>transferred to medium containing 14N</td>
</tr>
<tr>
<td>Less dense</td>
<td>More dense</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION. Meselson and Stahl compared their results to those predicted by each of the three models in Figure 16.10, as shown below. The first replication in the 15N medium produced a band of hybrid (15N-14N) DNA. This result eliminated the conservative model. The second replication produced both light and hybrid DNA, a result that refuted the dispersive model and supported the semiconservative model. They therefore concluded that DNA replication is semiconservative.

<table>
<thead>
<tr>
<th>Predictions</th>
<th>First replication</th>
<th>Second replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconservative model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersive model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INQUIRY IN ACTION Read and analyze the original paper in *Inquiry In Action: Interpreting Scientific Papers,* p. 369.

See the related Experimental Inquiry Tutorial in MasteringBiology.

If Meselson and Stahl had first grown the cells in 15N-containing medium and then moved them into 14N-containing medium before taking samples, what would have been the result?

1. Describe the purpose of the study (as you understand it) in your own words.
2. What was the "gap" in the research that the authors were trying to fill by doing their study?
3. Make some notes about the authors' major conclusions or findings as you understand them.
4. How did the authors analyze their data? What tests did they use?
5. Do the authors suggest any problems with the study that could lead to unreliable results?
6. Was there anything that was left unfinished? Did the authors raise questions or make points that were left orphaned in the paper?
7. Write (in your own words) the significant contributions of the experimental work in this journal article as reported by the authors.
8. What are three implications of the result?
9. What future study can you conduct from this study?
10. State three questions you can generate from this study.
11. State two questions you can generate from the conclusion.
Do molecular signals in the cytoplasm regulate this cell cycle?

EXPERIMENT Researchers at the University of Colorado wondered whether a cell's progression through the cell cycle is controlled by cytoplasmic molecules. To investigate this, they selected cultured mammalian cells that were at different phases of the cell cycle and induced them to fuse. Two such experiments are shown here.

Experiment 1

When a cell in the S phase fused with a cell in G1, the G1 nucleus immediately entered the S phase-DNA was synthesized.

Experiment 2

When a cell in the M phase fused with a cell in G1, the G1 nucleus immediately began mitosis-a spindle formed and the chromosomes condensed, even though the chromosomes had not been duplicated.

CONCLUSION The results of fusing a G1 cell with a cell in the S or M phase of the cell cycle suggest that molecules present in the cytoplasm during the S or M phase control the progression to those phases.

The progression of phases did not depend on cytoplasmic molecules and each phase began when the previous one was complete, how would the results have differed?

A single cell with two nuclei. If one of the original cells was in the S phase and the other was in G1, the G1 nucleus immediately entered the S phase, as though stimulated by signaling molecules present in the cytoplasm of the first cell. Similarly, if a cell undergoing mitosis (M phase) was fused with another cell in any stage of its cell cycle, even G1, the second nucleus immediately entered mitosis, with condensation of the chromatin and formation of a mitotic spindle (Figure 12.14).

The Cell Cycle Control System

The experiment shown in Figure 12.14 and other experiments on animal cells and yeasts demonstrated that the sequential events of the cell cycle are directed by a distinct cell cycle control system, a cyclically operating set of molecules in the cell that both triggers and coordinates key events
1. Describe the purpose of the study (as you understand it) in your own words.

2. What was the "gap" in the research that the authors were trying to fill by doing their study?

3. Make some notes about the authors' major conclusions or findings as you understand them.

4. How did the authors analyze their data? What test(s) did they use?

5. Do the authors suggest any problems with the study that could lead to unreliable results?

6. Was there anything that was left unfinished? Old the author raise questions or make points that were left orphaned in the paper?

7. Write (in your own words) the significant contributions of the experimental work in this Journal article as reported by the authors.

8. What three implications of the result?

9. What future study can you conduct from this study?

10. State three questions you can generate from this study.

11. State two questions you can generate from the conclusion.

INQUIRY

How do mammals detect different tastes?

EXPERIMENT To investigate the basis of mammalian taste perception, Ken Mueller, Nick Ryba, and Charles Zuker used a chemical called phenyl-1-glycyrpanoside (PBDG). Humans find the taste of PBDG extremely bitter. Mice, however, appear to lack a receptor for PBDG. Whereas mice avoid drinking water containing other bitter tastants, they show no aversion to water that contains PBDG.

Using a molecular cloning strategy, Mueller generated mice that made the human PBDG receptor in cells that normally make either a sweet receptor or a bitter receptor. The mice were given a choice of two bottles, one filled with pure water and one filled with water containing PBDG at varying concentrations. The researchers then observed whether the mice had an attraction or an aversion to PBDG.

![Graph showing relative consumption of PBDG](image)

Relative consumption = (Fluid Intake from bottle containing PBDG + Total fluid intake) X 100%.

CONCLUSION The researchers found that the presence of a bitter receptor in sweet taste cells is sufficient to cause mice to be attracted to a bitter chemical. They concluded that the mammalian brain must therefore perceive sweet or bitter taste solely on the basis of which sensory neurons are activated.

Suppose Instead of the PBDG receptor the researchers used a receptor specific for a sweetener that humans crave but mice ignore. How would the results of the experiment have differed?

reprogram gustation in a mouse (Figure 50.23). Based on these and other studies, the researchers concluded that an individual taste cell expresses a single receptor type and detects tastants representing only one of the five tastes.

The receptor cells for taste in mammals are modified epithelial cells organized into taste buds, which are scattered in several areas of the tongue and mouth (Figure 50.24). Most taste buds on the tongue are associated with nipple-shaped projections called papillae. Any region of the tongue with taste buds can detect any of the five types of taste. (The frequently reproduced "taste maps" of the tongue are thus not accurate.)

Taste receptors fall into two categories, each evolutionarily related to receptors for other senses. The sensation of sweet,
Analyzing a Journal Article

1. Describe the purpose of the study (as you understand it) in your own words.

2. What was the "gap" in the research that the authors were trying to fill by doing their study?

3. Make some notes about the authors' major conclusions or findings as you understand them.

4. How did the authors analyze their data? What tests did they use?

5. Do the authors suggest any problems with the study that could lead to unreliable results?

6. Was there anything that was left unfinished? Did the author raise questions or make points that were left orphaned in the paper?

7. Write (in your own words) the significant contributions of the experimental work in this journal article as reported by the authors.

8. What are three implications of the result?

9. What future study can you conduct from this study?

10. State three questions you can generate from this study.

11. State two questions you can generate from the conclusion.
Analyzing a Journal Article

1. Describe the purpose of the study (as you understand it) in your own words.

2. What was the gap in the research that the authors were trying to fill by doing their study?

3. Make some notes about the authors' major conclusions or findings as you understand them.

4. How did the authors analyze their data? What tests did they use?

5. Do the authors suggest any problems with the study that could lead to unreliable results?

6. Was there anything that was left unfinished? Did the author raise questions or make points that were left orphaned in the paper?

7. Write (in your own words) the significant contributions of the experimental work in this journal article as reported by the authors.

8. What are three implications of the result?

9. What future study can you conduct from this study?

10. State three questions you can generate from this study.

11. State two questions you can generate from the conclusion.

CONCLUSION During anaphase in this cell type, chromosome movement is correlated with kinetochore microtubules shortening at the kinetochore ends and not at their spindle pole ends. This experiment supports the hypothesis that during anaphase, a chromosome is walked along a microtubule as the microtubule depolymerizes at its kinetochore end, releasing tubulin subunits.

If this experiment had been done on a cell type in which "reeling in" at the poles was the main cause of chromosome movement, how would the mark have moved relative to the poles? How would the microtubule lengths have changed?
The presence of enormous coral snakes affects predation rates on their mimics, kingsnakes.

METHOD David Pfennig and his colleagues made artificial snakes to test a prediction of the mimicry hypothesis: that kingsnakes benefit from mimicking the warning coloration of venomous coral snakes in regions where coral snakes are present. The researchers placed an equal number of artificial kingsnakes (experimental group) and artificial snakes (control group) at 14 field sites, half in the area where two snakes cohabit and half in the area where coral snakes are present. The researchers recovered the artificial snakes after four days and tabulated predation data based on teeth and claw marks on the snakes.

In the field sites where coral snakes are absent, most attacks were on brown artificial snakes. Where coral snakes were present, most attacks were on brown artificial snakes.

The field experiments support the mimicry hypothesis falsifying the prediction, which was that mimicking coral snakes would only be effective in areas where coral snakes are present. The experiment also tested an alternative hypothesis: that predators generally avoid snakes with brightly colored rings. That hypothesis was falsified by the data showing that in areas without coral snakes, the ringed fake snakes failed to repel predators. (The fake kingsnakes may have attacked more often in those areas because their bright pattern is easier to spot than the brown fakes.)

Wh. role do hormones play in making a mammal male or female?

EXPERIMENT Alfred Jost, at the College de France in Paris, wondered whether gonadal hormones instruct an embryo to develop as male or female in accord with its chromosome set. Working with rabbit embryos still in the mother’s uterus, at a stage before sex differences are discernible, he surgically removed the portion of each embryo that could form the ovaries or testes. When the baby rabbits were born, he made note of both chromosomal sex and the sexual differentiation of the genital structures.

RESULTS

<table>
<thead>
<tr>
<th>Chromosome Set</th>
<th>Appearance of Genitalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>KV (male)</td>
<td>Male</td>
</tr>
<tr>
<td>XX (female)</td>
<td>Female</td>
</tr>
</tbody>
</table>

ONCLUSION In rabbits, male development requires a hormonal signal from the male gonad. In the absence of this signal, all embryos develop as females. Jost later demonstrated that embryos developed male genitalia if the surgically removed gonad was replaced with a crystal of testosterone. The process of sex determination occurs in a highly similar manner in all mammals, including humans.

SOURCE A. Jost, Recherches sur la differentiation sexuelle de l’embryon de lapin (Studies on the sexual differentiation of the rabbit embryo), Archives d’Anatomie Mammalique et de Morphologie Experimentale 45:271-316 (1947).

Question: What result would Jost have obtained if female development also required a signal from the gonad?

rstem and for the development of female secondary sex characteristics. In mammals, progestins, which include progesterone, are primarily involved in preparing and maintaining tissues of the uterus required to support the growth and development of an embryo.

Estrogens and other gonadal sex hormones are components of hormone cascade pathways. Synthesis of these hormones is controlled by gonadotropins (FSH and LH) from the anterior pituitary gland (see Figure 45.16). FSH and LH secretion by the hypothalamus, which is in turn controlled by GnRH (gonadotropin releasing hormone), a releasing hormone from the hypothalamus. We will examine the feedback relationships that regulate gonadal steroid secretion in detail in Chapter 46.

1. What are three implications of the result?

2. What was the ‘gap’ in the research that the authors were trying to fill by doing their study?

3. Make some notes about the authors' major conclusions or findings as you understand them.

4. How did the authors analyze their data? What tests did they use?

5. Do the authors suggest any problems with the study that could lead to unreliable results?

6. Was there anything that was left unfinished? Did the author raise questions or make points that were left orphaned in the paper?

7. Write (in your own words) the significant contributions of the experimental work in this journal article as reported by the authors.

8. What are three implications of the result?

9. What future study can you conduct from this study?

10. State three questions you can generate from this study.

11. State two questions you can generate from the conclusion.
Why is sperm usage biased when female fruit flies mate twice?...

EXPERIMENT When a female fruit fly mates twice, 80% of the offspring result from the second mating. Scientists had postulated that ejaculation from the second mating displaces stored sperm. To test this hypothesis, Hondy Snook, at the University of Sheffield, and David Hosken, at the University of Zurich, used mutant males with altered reproductive systems. "No-ejaculate" males mate, but do not transfer sperm or fluids to females. "No-sperm" males mate and ejaculate, but make no sperm. The researchers allowed females to mate with wild-type males and then mate with wild-type males, no-sperm males, or no-ejaculate males. As a control, some females were mated only once. The scientists then dissected each female under a microscope and recorded whether sperm were absent from the spermatheca, the major sperm storage organ.

RESULTS

<table>
<thead>
<tr>
<th>Percentage of females lacking sperm in spermatheca</th>
<th>Control; not remated to wild-type males</th>
<th>Remated to wild-type males</th>
<th>Remated to "no-sperm" males</th>
<th>Remated to "no-ejaculate" males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control; not remated to wild-type males</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Remated to wild-type males</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Remated to "no-sperm" males</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Remated to "no-ejaculate" males</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

CONCLUSION Because remating reduces sperm storage when no sperm or fluids are transferred, the hypothesis that ejaculation from a second mating displaces stored sperm is incorrect. Instead, it appears that females sometimes get rid of stored sperm in response to remating. This might represent a way for females to replace stored sperm, possibly of diminished fitness, with fresh sperm.

1. Why is sperm usage biased when female fruit flies mate twice?...

2. What was the "gap" in the research that the authors were trying to fill by doing their study?

3. Make some notes about the authors' major conclusions or findings as you understand them.

4. How did the authors analyze their data? What tests did they use?

5. Do the authors suggest any problems with the study that could lead to unreliable results?

6. Was there anything that was left unfinished? Did the author raise questions or make points that were left orphaned in the paper?

7. Write (in your own words) the significant contributions of the experimental work in this journal article as reported by the authors.

8. What are three implications of the result?

9. What future study can you conduct from this study?

10. State three questions you can generate from this study.

11. State two questions you can generate from the conclusion.

CONCEPT 46.3

Reproductive organs produce and transport gametes

Surveying some of the general features of animal reproduction, we will focus the rest of the chapter on humans, beginning with the anatomy of the reproductive system in each sex.

Female Reproductive Anatomy

The female's external reproductive structures are the clitoris and two sets of labia, which surround the clitoris and vaginal...
CONSTRUCTING LINE GRAPHS*

Suppose we are studying some chemical reaction in which a substance, \(A \), is being used up. We begin with a large quantity (100 mg) of \(A \), and we measure in some way how much \(A \) is left after different times. The results of such an experiment might be presented pictorially like this:

![Figure A.1](image)

This is the kind of picture graph that you often see in newspapers. This information can be presented much more simply on a graph - a line graph is permissible - because our experience tells us that when \(A \) is disappearing in a chemical reaction, it is disappearing more or less smoothly and will not suddenly reappear. In other words, the progress of a chemical reaction is a continuous process, and because time is a continuous process it is permissible to relate the two kinds of information to one another on a line graph. The procedure for constructing the line graph is shown in Figure A.2.

![Figure A.2](image)

* Based on a handout by Dr. Mary Stiller, Purdue University.
It should be clear from the diagram that each point corresponds both to a particular measurement of the amount of A remaining and to the particular time at which that amount remained. (A heavy dot is made opposite both of these two related quantities.) When all the measurements have been recorded in this way, we connect the dots with a line, shown in Figure A.3. (Figures A.21-A.23 explain when to connect the data points.)

![Graph](image)

It should be dear by looking at our graph that the only measurements we actually made are those indicated by the dots. However, because the information on both scales of the graph is assumed to be continuous, we can use the graph to find out how much A would have been found if we had made our measurements at some other time, say 2.5 hours. We merely locate the line that corresponds to 2.5 hours on our time scale and follow it up until it crosses our line graph at the point X; then we look opposite X to the "Mg of A Remaining" scale, and read off 50 mg. We conclude, then, that if we had made a measurement at 2.5 hours, we would have found 50 mg of A left. In a similar way, we can find out from our graph at what time a given amount of A, say 65 mg, would be left. We have merely to find the line that represents 65 mg on the vertical scale and follow it across until it cuts the line graph at point Y. Then we see 1.75 hours on the "Time" scale opposite Y. This tells us that had we wished to stop the reaction with 65 mg of A remaining, we would have had to do so after 1.75 hours.

You will notice that part of the graph has been drawn with a broken line. In making a line graph we are properly allowed to connect only the points representing our actual measurements. It is possible that measurements made after 3 hours will give points that will fall on the broken-line extension of the graph, but this is not necessarily so. In fact, the reaction may begin to slow up perceptibly, so that much less A is used up in the fourth hour than in the third hour. Not having made any measurements during the fourth hour, we cannot tell, and we confess our ignorance quite openly by means of the broken line. The broken line portion of the graph is called an extrapolation, because it goes beyond our actual experience with this particular reaction. Between any two of our
measured points it seems fairly safe to assume that the reaction is proceeding steadily) and this is called an **interpolation**. Interpolations can only be made between measured points on a graph; beyond the measured points we must extrapolate. We know that the amount of A remaining after 4 hours is somewhere between 0 and 40 mg. The amount indicated by the broken line on the graph, 20 mg, is only a logical guess.

Unfortunately, it sometimes happens that even professionals take this sort of limitation offline graphs for granted and do not confess, by means of a broken line, the places where they are just guessing. Therefore it is up to readers of the graph to notice where the last actual measurement was made and use their own judgment about the extrapolated part. Perhaps the extrapolated part fits quite well with the reader's own experience of this or a similar reaction, and he or she is quite willing to go along with the author's extrapolation. On the other hand, the reader may be interested only in the early part of the graph and be indifferent to what the author does with the rest of it. It may also be that the reader knows that the graph begins to flatten out after 3 hours and so disagrees with the author. The point is that we, the readers, must be aware of what part of the graph is extrapolated and be indifferent to what the author does with the rest of it. Therefore, it is very improper to construct a line graph consisting of an unbroken line without indicating the experimentally determined points.

BASIC REQUIREMENTS FOR A GOOD GRAPH

The following procedure applies primarily to graphs of experimental data that are going to be presented for critical evaluation. It does not apply to the kind of rough sketch that we often use for purposes of illustration.

Every graph presented for serious consideration should have a good **title** that tells what the graph is about. Notice that we need more than just a title; we need a **good** title. Before we try to make a good title, let us look at an example and try to decide what kind of title is a useful one. Look at Figure A.4.

![Figure A.4](image)

If you like pizza, it might be very useful to know when this party is being held. Without a title, you cannot tell even whether the graph refers to any particular party at all. It
might represent average figures for all the parties held last year, or it might represent the expected figures for a party that is going to be held tonight. Let’s suppose that these data refer to a study party given by AP Biology students on March 9. Here, then, are some possible titles:

(a) The APs Have a Party

(b) Pizza Rules! Enjoy it with AP

(c) An AP Biofeast!

None of those titles is especially useful or informative because none of them tells what the graph is all about. Now look at these two titles:

(d) Anticipated Consumption of Slices of Pizza at the AP Biology Party, March 9

(e) Anticipated Consumption of Slices of Pizza at the AP Biology Party, March 9, 2011, 7:00 p.m.-11:00 p.m.

You should be able to see that only title (e) is helpful and useful. It enables you to tell, by glancing at the calendar, whether or not you will attend the party and it helps make that graph fall a little more steeply; The point we are driving at is that a good title is one that tells exactly what information the author is trying to present with the graph. Although brevity is desirable, it should not substitute for completeness and clarity.

Now that you are clear on titles, look at the graph in Figure A.5. Its title tells you that here is some potentially useful information. The graph suggests that, at least for 2011, there was an upper limit to the amount of time people could usefully spend in studying for an exam, and you might wonder, for example, how long you would have had to study to make a perfect score.

Unfortunately, however, you cannot tell, because the graph has no labels of numbers or units the scales. Even though this graph has a descriptive and intriguing title, it is of no use to us at all without these very important parts. Obviously, before we can take full advantage of the information the graph is trying to present, we need to have some additional details.
In Figure A.6 the additional information has been supplied, information that seems to make the graph more useful to us in preparing for the exam.

Figure A.6: Relation Between Study Time and Score on a Biology Exam in 2011

This additional information includes scales, or axes, that are carefully marked with numbers, and labels and units that are neatly presented. Obviously, one cannot label all the points along the axes; that would make the numbers crowd together and look sloppy. The units should be marked at intervals that correspond more or less to the intervals between the experimental points. The small marks, called *index marks*, can be drawn if the experimental points are very widely spaced. Most elegantly, a frame is put around the whole graph, and index marks are placed all around. This makes it easy to lay a ruler across the graph when interpolating between the experimental points. The diagram in Figure A.7 summarizes some features of a good graph.

Figure A.7: Relation Between Study Time and Score on a Biology Exam in 2011

- **Numbers**
- **Units**
- **Index Marks**
- **Labels**
- **Points Clearly Marked**
- **Index Marks**
- **Numbers**
Steepest or Slope of a Line Graph

Look at the graph in Figure A.8 for the disappearance of A in a chemical reaction. Such a graph, in which the amount of some quantity is shown on the vertical scale, or ordinate, and time shown on the horizontal scale, or abscissa) is frequently called a "progress graph" or "progressive curve," because it shows how some process progresses in time. This graph may also be called a "time course" for the process because it shows the extent to which the process has occurred at different times.

Let us call the process represented by the graph "Process I" and consider another reaction, "Process II," in which A is also consumed. Suppose that we start Process II also with 100 mg of A, and that after 1, 2, and 3 hours there are 90, 80, and 70 mg, respectively, left. The progress curve for Process II is displayed in Figure A.9.

Figure A.8

Time Course of Disappearance of A in Process I

Figure A.9

Time Course of Disappearance of A in Process II
Now suppose we want to compare the graphs for the TI-vo processes. Because they have exactly the same scales, we can put both lines on the same graph as shown in Figure A.10. Notice, however, that now in addition to the labels on the scales, we need labels on the two lines to distinguish between the two processes.

Look at the 1-hour mark on the time scale of the graph. Opposite this put an X on the line for Process I and a Y on the line for Process II. Then, opposite X on the ordinate you should be able to see that 80 mg of A are left in Process I; opposite Y you can see that 90 mg of A are left in Process II. Apparently, Process I has used up 20 mg of A and Process II has used up only 10 mg in the same amount of time. Obviously, Process I is faster, and the line graph for Process I is steeper than the graph for Process II.

The rate for Process I is 20 mg A used/hr, while the rate for Process II is 10 mg A used/hr.

We have seen that a steeper line graph means a faster reaction when the progress curves for two reactions are plotted on the same scale. (Obviously, if the progress curves are plotted on different scales, we cannot compare the steepness of the line directly; but have to calculate what the slope would be if the two curves were plotted on the same scale.)

Suppose, now, that we make anew kind of graph—one that will show the steepness, or slope, of the progress curve. Because the slope of the progress curve is a measure of the speed of velocity, or rate of the reaction or process, such a graph is frequently called a rate graph or "rate curve." The diagram in Figure A.10 shows how a rate curve can be made for Process I.
Notice that the time scale of this rate graph is exactly like the time scale of the progress curve from which it was derived, but that the ordinate is different. The ordinate of the progress curve shows milligrams of A remaining; the ordinate of the rate curve shows milligrams of A used per hour. Obviously, a rate graph must always show rate on one of its scales, and it is ordinarily the vertical one that is used. This is because the rate of a reaction or process is what mathematicians call a dependent variable. Time is the independent variable in this experiment; it is independent of changes in the dependent variable (the rate of reaction), and it is the variable that is shown on the horizontal axis. Regardless of whether the process is the increase in height or weight of a plant, or the using up or producing of something in a reaction, the rate graph for the process must always show amount of something per unit time on one of its axes. One very common type of rate graph is the one shown in Figure A.11, with a rate on the ordinate and the time on the abscissa. Other kinds of rate graphs may have temperature or molarity on the abscissa. The rate of growth of a plant, for example, depends on how many factors that we might wish to vary, and so we can have as many different kinds of rate graphs for that process as there are independent variables.

Let us emphasize: a progress curve always shows amount of reaction on the vertical scale and time on the horizontal scale. The corresponding rate curve may show time or some other variable on the horizontal scale, but it always shows rate, or amount of reaction per unit time) on the vertical scale. This point is very important. When we look at a rate curve that has time on the horizontal scale, we must visualize the progress curve from which the rate curve was derived. When we look at a rate curve that has any other variable except time on the horizontal scale, we shall see that each point on the rate curve represents a separate progress curve.

If in the same way as for Process I) a rate curve can be made for Process II. Plotted on the same graph, the two should look something like the diagram in Figure A.12.
There are two things to notice in this example. First, the curve for Process I lies higher than that for Process II. This is in accord with the facts as we have seen them, namely, that Process I is faster and so has a greater slope or higher value for the steepness.

Second, notice that both curves are perfectly flat. Naturally, because the progress curves for the two processes were both perfectly straight lines, having everywhere the same slope, the rate of steepness graph must show exactly the same thing, that is, that the rate or steepness is everywhere the same.

On the other hand, consider the graph in Figure A.13, which represents the disappearance of A in yet another reaction, Process III.

You can see that Process III differs from Processes I and II in that the progress curve for III is not a perfectly straight line. It is steepest at the beginning, becomes less steep after 1 hour, and again after 3 hours. Obviously, because the rate of the process is changing with time, the corresponding rate curve will not be perfectly flat. The rate has to start high, then drop at 1 hour and at 3 hours, and you can see in the graph on the right...
that this is exactly what it does. In fact, the rate curve looks like steps because whenever the slope of the progress curve decreases, the rate curve must show a drop to a lower value. Conversely, if the progress curve for a process should get steeper as sometimes happens (the reaction goes faster after it gets "warmed up"), the rate curve must show a corresponding increase to a higher value.

Until now we have been able to read the steepness, or slope, of the progress curve directly from the scales of the graph because the progress curves we have been studying were either perfectly straight lines or else made up of straight-line segments. In most real situations, however, we cannot do this because the slope of the progress curve does not change sharply at a given time, but, gradually, over a period of time. You probably remember how to measure the slope of a curved line, but let us review the process anyway. (See Figure A.14.)

![Figure A.14](image)

Suppose we want to measure the slope, or steepness, of the curved line Ca at time 2 hours. We can see that the curve rises 5 units total in the 2 hours, so that the average slope is 2.5 units per hour. However, it is easy to see from the graph that this average is very misleading; the progress curve is almost flat at the beginning (i.e., has 0 slope) and then accelerates rapidly, so that the line curves upward. If we want to find the true slope at 2 hours, we must draw line L in such a way that L has the same slope as C at the 2-hour point. Then we can see that L rises about 5 units between 1 and 2 hours, just twice the average slope for the first 2 hours.

We have seen that a perfectly flat curve, like that for Process I or II, means that the corresponding progress curve is a perfectly straight line having the same slope at all points. Conversely, a progress curve that changes in slope, like that of Process III, will give a rate curve that looks like steps. You should be able to figure out that the "steps" on the rate curve will be sharp and square if the progress curve has an abrupt change in slope, and more rounded off if the progress curve changes slope gradually. In any case, in regions where the rate curve is perfectly flat it is clear that the progress curve must have constant steepness, or slope. However, if the progress curve itself gets perfectly flat, then that portion of the progress curve has 0 slope; in other words, the reaction has stopped. This kind of situation is pictured in Figure A.15 where the rate and progress curves for another reaction, call it Process IV, are shown.
Intro To Labs for Advanced Placement Biology

Contents

1) Methods of Investigation
 - The Scientific Method
 - Planning an Investigation
 - Stages of an Investigation
 - Making Investigations

2) Collection and Analysis
 - Transformations
 - Constructing Tables and Graphs
 - Descriptive Statistics
 - Frequency Distributions

3) Sampling and Data Collection
 - Direct Methods
 - Point Sampling
 - Quadrat Sampling
 - Transect Sampling
 - Mark and Recapture

4) Sampling Animal Populations
 - Indirect Methods
 - Equipment and Sampling Methods
 - Keying Out Species

Click on the hyperlink title you wish to view
THE SCIENTIFIC METHOD

- Scientific knowledge grows through a process called the **scientific method**.
- This process involves
 - observation and measurement
 - hypothesizing and predicting
 - and planning and executing investigations designed to test formulated **hypotheses**.
THE SCIENTIFIC METHOD

- Observations, Hypotheses, and Predictions

Making Observations

- Many types of observation can be made on biological systems. They may involve:
 - observation of certain behaviors in wild populations
 - physiological measurements made during previous experiments
 - 'accidental' results obtained when seeking answers to completely unrelated questions
- The observations may lead to the formation of questions about the system being studied.
THE SCIENTIFIC METHOD

• Observations-
 observation is the basis for formulating hypotheses and making predictions. An observation may generate a number of plausible hypotheses, and each hypothesis will lead to one or more predictions, which can be tested by further investigation.

Observation 1: Some caterpillar species are brightly colored and appear to be conspicuous to predators such as insectivorous birds. Predators appear to avoid these species. These caterpillars are often found in groups, rather than as solitary animals.

Observation 2: Some caterpillar species are cryptic in their appearance or behavior. Their camouflage is so convincing that, when alerted to danger, they are difficult to see against their background. Such caterpillars are usually found alone.

THE SCIENTIFIC METHOD

• A hypothesis offers a tentative explanation to questions generated by observations and leads to one or more predictions about the way a biological system will behave.

• A hypothesis is like "stereotyping":
 - For example, We know that tomatoes are fruits, that many fruits produce ethylene, and that ethylene promotes fruit ripening.
 - If tomatoes produce ethylene, then placing them in a container that traps ethylene will cause the tomatoes to ripen faster.
THE SCIENTIFIC METHOD

Hypothesis:
- A scientific hypothesis is a tentative explanation for an observation which is capable of being tested by experimentation.
- Hypotheses lead to **predictions** about the system involved and they are accepted or rejected on the basis of the investigation's findings.
- Acceptance of the hypothesis is not necessarily permanent: explanations may be rejected later in light of new findings.

Forming a Hypothesis
- **Features of a sound hypothesis:**
 1. It is based on observations and prior knowledge of the system.
 2. It offers an explanation for an observation.
 3. It refers to only one independent variable.
 4. It is written as a definite statement and not as a question.
 5. It is testable by experimentation.
 6. It leads to predictions about the system.

THE SCIENTIFIC METHOD

Testing a Hypothesis
- **Features of a sound method:**
 1. It tests the validity of the hypothesis.
 2. It is repeatable.
 3. It includes a control which does not receive treatment.
 4. All variables are controlled where possible.
 5. The method includes a dependent and independent variable.
 6. Only the independent variable is changed (manipulated) between treatment groups.
THE SCIENTIFIC METHOD

Types of Hypothesis

<table>
<thead>
<tr>
<th>Hypothesis involving manipulation</th>
<th>Hypothesis of choice</th>
<th>Hypothesis involving observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used when the effect of manipulating a variable on a biological entity is being investigated.</td>
<td>Used when investigating species preference, e.g., for a particular habitat type or microclimate.</td>
<td>Used when organisms are being studied in their natural environment and conditions cannot be changed.</td>
</tr>
<tr>
<td>Example: The composition of applied fertilizer influences the rate of growth of plant A.</td>
<td>Example: Woodpeckers (species A) show a preference for tree type when nesting.</td>
<td>Example: Fern abundance is influenced by the degree to which the canopy is established.</td>
</tr>
</tbody>
</table>
The Null Hypothesis

• For every hypothesis, there is a corresponding null hypothesis; a hypothesis against the prediction, of no difference or no effect.

 A hypothesis based on observations is used to generate the null hypothesis (Ho). Hypotheses are usually expressed in this form for the purposes of statistical testing.

 Ho may then be rejected in favor of accepting the alternative hypothesis (HA) that is supported by the predictions.

 8 Rejection of the hypothesis may lead to new, alternative explanations (hypotheses) for the observations.

• Scientific information is generated as scientists make discoveries through testing hypotheses.

Formative assessment

• 1. Why might an accepted hypothesis be rejected at a later date?

• 2. Explain why a method must be repeatable:

• 3. In which situation(s) is it difficult, if not impossible, to control all the variables?
Generating Predictions

- There are several hypotheses and predictions that could be generated to account for the two previous observations:

 Hypothesis 1: Bright colors signal to potential predators that the caterpillars are distasteful.

 0 Prediction 1: Inexperienced birds will learn from a distasteful experience with an unpalatable caterpillar species and will avoid them thereafter.

 Hypothesis 2: Inconspicuous caterpillars are palatable and their cryptic coloration reduces the chance that they will be discovered and eaten.

 0 Prediction 2: Insectivorous birds will avoid preying on brightly colored caterpillars and they will prey readily on cryptically colored caterpillars if these are provided as food.

The Null Hypothesis

- Creating a null hypothesis enables a hypothesis to be tested in a meaningful way using statistical tests.

- If the results of an experiment are statistically significant, the null hypothesis can be rejected.

- If a hypothesis is accepted, anyone should be able to test the predictions with the same methods and get a similar result each time.

- Scientific hypotheses may be modified as more information becomes available.
Assumptions

• In any experimental work, you will make certain assumptions about the biological system you are working with.
 ▪ **Assumptions** are features of the system (and your experiment) that you assume to be true but do not (or cannot) test.
 ▪ Possible assumptions for the previous hypotheses (and their predictions) include:
 i. Birds and other predators have color vision.
 ii. Birds and other predators can learn about the palatability of their prey by tasting them.

Formative assessment

• 1. Study the example above illustrating the features of cryptic and conspicuous caterpillars, then answer the following:
 - (a) Generate a hypothesis to explain the observation that some caterpillars are brightly colored and conspicuous while others are cryptic and blend into their surroundings: __

 - (b) State the null form of this hypothesis: ___

 - (c) Describe one of the assumptions being made in your hypothesis: ___

 - (d) Based on your hypothesis, generate a prediction about the behavior of insectivorous birds towards caterpillars: __
Planning An Investigation

Use a checklist or a template to construct a plan as outlined below:

@ Preliminary
 ↓ Aim and hypothesis are based on observation.
 ↓ Study is feasible and the chosen organism is suitable for study.

∥ Assumptions and variables
 ↓ Assumptions and variables have been identified and controls established.
 ↓ Preliminary treatments or trials have been considered.

ill Data collection
 ↓ Any necessary changes have been made to the initial plan.
 ↓ A results table accommodates all raw data.
 ↓ Data can be analyzed appropriately.

Variables

¬ A variable is any characteristic or property able to take any one of a range of values. Investigations often look at the effect of changing one variable on another (the biological response variable).
¬ It is important to identify all variables in an investigation: independent, dependent, and controlled. Note that there may be nuisance factors of which you are unaware.
¬ In all fair tests, only one variable (the independent variable) is changed by the investigator.
Dependent and Independent Variables

How the dependent variable changes depends on the changes in the independent variable, i.e. the dependent variable is influenced by the independent variable.

When heating water, the temperature of the water rises over time.

Therefore the temperature of the water is dependent upon the length of time it is left for.

Time is independent as it is not influenced by the temperature of the water.

Identifying Variables

- All variables (independent, dependent, and controlled) must be identified in an investigation.

Dependent variable
- Measured during the investigation.
- Recorded on the Y axis of the graph.

Independent variable
- Set by the investigator.
- Recorded on the X axis of the graph.

Controlled variables
- Factors that are kept the same or controlled during the investigation. List these in the method as appropriate to your investigation.
Examples of Investigations

- Once all of the variables have been identified in an investigation, you need to determine how these variables will be set and measured.
- You need to be clear about how much data, and what type of data, you will collect.

Some examples of investigations are shown below:

<table>
<thead>
<tr>
<th>Aim</th>
<th>Independent variable</th>
<th>Dependent variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv. Stigate the effect Qf y using</td>
<td>on the following***</td>
<td>Temperture</td>
</tr>
<tr>
<td>Light intensity</td>
<td>Activity of woodlice</td>
<td>Light Intensity</td>
</tr>
<tr>
<td>Soil pH</td>
<td>Plant height</td>
<td>pH</td>
</tr>
</tbody>
</table>
Sample Size

- When designing your field study, the size of your sampling unit and the sample size \(n \) should be major considerations.
 - A sampling unit might be (for example) an individual organism or a quadrat.
 - The sample size might be the number of individuals or the number of quadrats.
- For field studies, sample size is often determined by the resources and time available to collect and analyze your data.
- It is usually best to take as many samples as you can, as this helps to account for any natural variability present and will give you greater confidence in your data.
Replication

- Replication in experiments refers to the number of times you repeat your entire experimental design (including controls).

!!! Increasing the sample size (n) is not the same as true replication. In the replicated experiment below, n=6.

Making Investigations 1

- An example of a basic experimental design aimed at investigating effect of pH on the growth of a bog adapted plant species follows:

 i: Observation: A student noticed an abundance of a common plant (species in a boggy area of land. The student tested the soil pH and found it to be quite low (between 4 and 5). Garden soil was about pH 7.

 <iii Hypothesis: Species A is well adapted to grow at low pH and pH will influence the vigor with which this plant species grows.

 <i Prediction: Species A will grow more vigorously (as measured by wet weight after 20 days) at pH 5 than at lower or a higher pH.
Making Investigations 2

Experiment: An experiment was designed to test the prediction that the plants would grow best at low pH. The design is depicted graphically below and on the next slide. It is not intended to be a full methodology.

Plan view of the experimental layout

- Watering regime: 150 ml per day water at pH 3
- Watering regime: 150 ml per day water at pH 5
- Watering regime: 150 ml per day water at pH 7 (control)
- Watering regime: 150 ml per day water at pH 9

Making Investigations 3

<table>
<thead>
<tr>
<th>Watering regime</th>
<th>150 ml per day water</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 3</td>
<td>3</td>
<td>pH 5</td>
<td>5</td>
<td>pH 7 (control)</td>
<td>7</td>
<td>pH 9</td>
<td>9</td>
</tr>
</tbody>
</table>

Each treatment contains 6 plants \((n = 6)\).

Note that in experiments with a large number of treatments and replication, it is important to randomize the arrangement of the treatments to account for any effects of location in the set-up. In this case, \(n = 6\), there are four different treatments and the experiment has been replicated six times.
Making Investigations 4

Control of variables:

Fixed variables include lighting and watering regime, soil type and volume, age and history of plants, pot size and type.

The independent variable is the pH of the water provided to the plants.

The dependent variable is plant growth rate \((g \, \text{day}^{-1})\) calculated from wet weight of entire plants (washed and blotted) after 20 days.

All other variables include genetic variation between plants and temperature.

Assumptions include: All plants are essentially no different to each other in their growth response at different pH levels; the soil mix, light quality and quantity, temperature, and water volume are all adequate for healthy continued growth.

Collection and Analysis

- Data collected by measuring or counting in the field or laboratory are called raw data.

 As part of planning an investigation, a suitable results table must be designed to record raw data.

- Once all the required data has been collected, they need to be analyzed and presented.

 To do this, it may be necessary to transform or process the data first.
Transformations

- Data are often transformed as a first step in the analysis of results.
 - Transforming data can make them more useful by helping to highlight trends and make important features more obvious.

Transformations include drawing a frequency table, or performing a calculation such as a total, rate, percentage, or relative value.

- Calculation of a rate is a commonly performed data transformation, and is appropriate when studying the growth of an organism (or population).
- Biological investigations often compare the rates of events in different situations, as shown in the example right.

Constructing Tables 1

Data can be presented in a number of ways.

- Tables provide an accurate record of numerical values and allow organization of data in a way that makes relationships and trends apparent. An example of a well constructed table is shown below:

Table 1: Length and growth of the third internode of bean plants receiving three different hormone treatments (data are given ± standard deviation).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sample size</th>
<th>Mean rate of interode growth (mm/hr, day^-1)</th>
<th>Mean internode length (mm)</th>
<th>Mean mass of tissue added (g day^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>60</td>
<td>0.60±0.04</td>
<td>32.3 ± 3.4</td>
<td>0.38 ± 0.09</td>
</tr>
<tr>
<td>Hormone 1</td>
<td>41</td>
<td>1.52±0.04</td>
<td>41.6 ± 4.1</td>
<td>0.51 ± 0.08</td>
</tr>
<tr>
<td>Hormone 2</td>
<td>98</td>
<td>0.27±0.03</td>
<td>38.4 ± 2.9</td>
<td>0.56 ± 0.028</td>
</tr>
<tr>
<td>Hormone 3</td>
<td>20</td>
<td>2.06±0.19</td>
<td>50.2 ± 1.8</td>
<td>0.48±0.020</td>
</tr>
</tbody>
</table>
Constructing Tables 2

- The rules for constructing tables are shown below:

Tables should have an accurate, descriptive title.
Non-free tables can be included in the report.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sample size</th>
<th>Mean rate of internode growth (mm/day)</th>
<th>Mean internode length (mm)</th>
<th>Mass of tissue (g/dice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>50</td>
<td>0.60 ± 0.04</td>
<td>32.3 ± 3.4</td>
<td>0.36 ± 0.025</td>
</tr>
<tr>
<td>HormoEl-1</td>
<td>46</td>
<td>1.52 ± 0.08</td>
<td>41.6 ± 3.1</td>
<td>0.51 ± 0.030</td>
</tr>
<tr>
<td>Hormo2</td>
<td>98</td>
<td>0.82 ± 0.05</td>
<td>38.4 ± 2.9</td>
<td>0.36 ± 0.028</td>
</tr>
<tr>
<td>No oneJ</td>
<td>85</td>
<td>20.6 ± 0.19</td>
<td>51.2 ± 1.8</td>
<td>0.68 ± 0.020</td>
</tr>
</tbody>
</table>

Heading and subheadings should be placed at the beginning of the table.

Constructing Graphs 1

- Graphs are useful for providing a visual image of trends in the data in a minimum of space.

Fig.1: Yield of two bacterial strains at different antibiotic levels. Vertical bars show standard errors (n = 6).
Descriptive Statistics 1

Descriptive statistics, such as mean, median, and mode, can be used to summarize data and provide the basis for statistical analysis.

Each of these statistics is appropriate to certain types of data or distributions, e.g. a mean is not appropriate for data with a skewed distribution.

- Standard deviation and standard error are statistics used to quantify the amount of spread in the data and evaluate the reliability of estimates of the true (population) mean (μ).

Constructing Graphs 2

- The rules for constructing graphs are shown below:

 - Plot points accurately.
 - Different responses can be distinguished using different symbols, lines, or bar colors.
 - Label both axes (provide SI units of measurement if necessary).
 - The dependent variable e.g. biological response, is plotted on the vertical (y) axis.
 - A break in an axis allows economical use of space if there are no data in the "broken" area. A floating axis (where zero points do not meet) allows data points to be plotted away from the vertical axis.

 Graphs (called figures) should have a concise, explanatory title. They should be numbered consecutively in your report.

 Fig. 1: Yield of two bacterial strains at different antibiotic levels. Vertical bars show standard errors (n=6)

 The spread of the data around the plotted mean value can be shown on the graph. Such measures include standard deviation and range. The values are plotted as error bars and give an indication of the reliability of the mean value.

 A key identifies symbols. This information sometimes appears in the figure.

 Each axis should have an appropriate scale. Decide on the scale by finding the maximum and minimum values for each variable.

 Mean (average) height of this group of people is 1.7 m. But what is the variance in this statistic in the population?
Descriptive Statistics 2

In a set of data values, it is useful to know the value around which most of the data are grouped; the center value. Basic descriptive statistics can summarize trends in your data.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Definition and use</th>
<th>Method of calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Average of all data entries. Measure of central tendency for normal distributions. Add all data entries. Divide by the number of entries.</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>Middle value when data are in rank order. Measure of central tendency for skewed distributions. Arrange data in increasing rank order. Identify the middle value.</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Most common data value. Good for bimodal distributions and qualitative data. Identify the category with the highest number of data entries.</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>The difference between the smallest and largest data values. Gives a crude indication of data spread. Identify largest and smallest values and calculate the difference between them.</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Distributions

Variability in continuous data is often displayed as a frequency distribution. A frequency plot will indicate whether the data have a normal distribution, or whether the data is skewed or bimodal.

The shape of the distribution will determine which statistic (mean, median, or mode) best describes the central tendency of the sample data.
Measuring

- **Standard deviation** (s) is a frequently used measure of the variability (spread or dispersion) in a set of data. Two different sets of data can have the same mean and range, yet the distribution of data within in the range can be quite different.
 - In a normally distributed set of data:
 - 68% of all data values will lie within one standard deviation of the mean;
 - 95% of all data values will lie within two standard deviations of the mean.

- The variance (s²) is another such measure of dispersion but the standard deviation is usually the preferred of these two measures.

The Reliability of the Mean

- The **reliability** of the sample mean (x̄) as an estimate of the true population mean can be indicated by the calculation of the standard error of the mean (standard error or SE). The standard error then allows the calculation of the **95% confidence interval** (95% CI) which can be plotted as error bars.

- The **95% confidence limits** are given by the value of the mean ± 95% CI.

 A 95% confidence limit (i.e. P = 0.05) tells you that, on average, 95 times out of 100, the true population mean will fall within these limits.

 For example, if we calculated the mean number of spots on 10 ladybirds, the 95% CI will tell us how reliable that statistic is as an indicator of the mean number of carapace spots in the whole population.
Statistical Tests

- Different statistical tests are appropriate for different types of data. The type of data collected will determine how/if it can be tested.
 - The null hypothesis of no difference or no effect can be tested statistically and may then be rejected in favor of accepting the alternative hypothesis that is supported by the predictions.
- Statistical tests may test for:
 a difference between treatments or groups.
 a trend (or relationship) in the data, for example, correlation and regression.

Sampling Populations

- Generally populations are too large to be examined directly (by direct count or measurement of all the individuals in the population), but they must be sampled in a way that still provides representative information about them.
- Most studies in population ecology involve collecting living organisms. Sampling techniques must be appropriate to the community being studied and the information required by the investigator.
 9 Sampling techniques include:
 8 point sampling
 9 transect (line and belt)
 O quadrat sampling
 () mark and recapture
Mark and Recapture

Mark and recapture is used to determine the total population density for highly mobile species in a certain area.

For a precise population estimate, mark-recapture methods require that about 20% of the population is marked, which can be difficult. Also, marking is difficult for small animals.

The Lincoln Index

This equation is used to estimate the size of the overall population.

\[
\text{Total population} = \frac{\text{No. of animals in 1st sample} \times \text{Total no. of animals in 2nd sample}}{\text{Number of marked animals in the second sample (recaptured)}}
\]

1. The population is sampled by capturing as many of the individuals as possible and practical.
2. Each animal in the sample is marked to distinguish it from unmarked animals.
3. Animals are returned to their habitat and left to mix with the rest of the population.
4. The population is sampled again (this need not be the same sample size as the first, but it must be large enough to be valid).
5. The numbers of marked to unmarked animals in this second sample is determined. The Lincoln Index is used to estimate overall population size.
Conclusions:

1. Summarize Results
2. See if hypothesis was support/rejected and evidence that lead you to this conclusion
3. Biological concept explains results?
4. Possible errors in experiment

Accuracy and Precision

- The terms accuracy and precision are often confused, or used interchangeably, but their meanings are different.
- In any study, **accuracy** refers to how close a measured or derived value is to its true value.
- Simply put, it is the correctness of the measurement. It can sometimes be a feature of the sampling equipment or its calibration.
- **Precision** refers to the closeness of repeated measurements to each other, i.e. the ability to be exact. A balance with a fault in it could give very precise (i.e. repeatable) but inaccurate (untrue) results.
Activity 1: Column Charts

Mrs. Jones recently polled all the students attending Baker Middle School. One of the questions she asked was, "What is your favorite cafeteria lunch?" The choices students could select from included hot dogs, burgers, tacos, pizza, or spaghetti. There were some interesting differences when the results were examined by gender.

<table>
<thead>
<tr>
<th>Favorite Lunch</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgers</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Hot Dogs</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Pizza</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Spaghetti</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Tacos</td>
<td>35</td>
<td>5</td>
</tr>
</tbody>
</table>

Create a spreadsheet file that includes this information. You should have data in cells A1 to C6.

Your chart should look something like this.

![Column Chart](image-url)
Essential Learning Skills: creating a column chart, changing alignment in a spreadsheet file, chart formats including labels, x and y axis', gridlines, titles, legends, moving charts on the spreadsheet, creating a footer, setting up landscape format, and printing directions.

Ms. Parry recently surveyed the students in her computer classes. She asked them several questions. One question was, "What is your favorite after school treat?" Their choices included candy, chips, cookies, or pizza.

2. To graph the results, set up a spreadsheet file so it looks exactly like this:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorite Treats</td>
<td>Number of Votes</td>
</tr>
<tr>
<td>Candy</td>
<td>18</td>
</tr>
<tr>
<td>Chips</td>
<td>40</td>
</tr>
<tr>
<td>Cookies</td>
<td>80</td>
</tr>
<tr>
<td>Pizza</td>
<td>12</td>
</tr>
</tbody>
</table>

Your chart should look something like this.
Activity 6: Getting Fancy with Pie Charts

Essential learning Skills: creating a Pie Chart, comparing two groups of data, chart formats including labels, titles, legends, moving charts on the spreadsheet, sorting data, creating a footer, and setting up portrait format.

1. Ms. Parry recently surveyed the 30 students in her 8th period computer class. She asked the students, "What color eyes do you have?" Type these responses into a spreadsheet file.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Brown</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Sra</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Hazel</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Your chart should look something like this.

<table>
<thead>
<tr>
<th>8th Period Eye Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>46%</td>
</tr>
<tr>
<td>7%</td>
</tr>
<tr>
<td>10%</td>
</tr>
<tr>
<td>27%</td>
</tr>
</tbody>
</table>

iill Green
■ Gray
□ Hazel
□ Blue
■■■■■ Brown
Activity 7: Making a Line Chart

Essential Learning Skills: creating a Line Chart, chart formats including labels, titles, legends, moving charts on the spreadsheet.

1. Billy is 14 years old and he is interested in becoming a good bowler. In fact, his goal is to be one of the best bowlers in the BMS Student Bowling League. Let’s take a look at his average scores for the last six months to see how he is doing.
 • Set up a spreadsheet file so that it contains the following information.

 | January | 200 |
 | February | 175 |
 | March | 200 |
 | April | 225 |
 | May | 250 |
 | June | 250 |

2. Line Chart
 You use a line chart when you want to see how values have changed over a period of time. A line chart makes it easy to identify a trend, if one exists.
 • Your chart should look something like this....

![Billy's Bowling Average Chart](chart.png)
Activity 8: Comparing Data in a line Chart

It's June and the manager of the school store at Baker Middle School is getting ready to order supplies for next September. The manager wants to examine trends over the past two years before making any ordering decisions. Type the following information into the spreadsheet file.

1.

<table>
<thead>
<tr>
<th>Term</th>
<th>2006 Profit</th>
<th>2007 Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term 1</td>
<td>$750.00</td>
<td>$950.00</td>
</tr>
<tr>
<td>Term 2</td>
<td>$450.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>Term 3</td>
<td>$450.00</td>
<td>$450.00</td>
</tr>
<tr>
<td>Term 4</td>
<td>$200.00</td>
<td>$200.00</td>
</tr>
</tbody>
</table>

2. Create a line chart.
 • Your chart should look something like this.
Directions: Read the accompanying sources in your summer packet. Then, answer the questions below using full, complete sentences. Pay specific attention to the experimental design and data analysis employed in each passage.

Passage 1: Plasmid Mapping
1. Consider the weaknesses of each hypothesis. Keeping this in mind, add one statement to each that would make the predictions more effective. You must justify your responses to earn full credit for this question.

2. What is the strength of each hypothesis?

Passage 2: Recombination Frequencies
1. Consider the strengths and weaknesses of each researcher’s proposal. Which model is most valid?

2. Explain your reasoning.

3. What are the differences between the arguments of Scientist 1 and Scientist 2?

4. Which argument is most valid and why?
Passage 3: Protein Structure

1. What are the similarities in the arguments of Scientist 1 and Scientist 2?

2. What is the respective implication of each scientist being right?

3. Could the experiment be solved without the fifth researcher? Explain.

Passage 4: Tomato Plants

1. If not stated, what is the
 a) Hypothesis
 b) Control
 c) Constant
 d) Variables in this experiment

2. What was the experiment trying to test?

3. What inference can be drawn based on Experiments 1, 2, and 3?

4. In which of the following ways was Experiment 2 different from Experiment 1?

5. Summarize each table in one or two sentences ONLY

Passage 5: Bacterial Growth and Light
1. If not stated, what is the
 a) Hypothesis
 b) Control
 c) Constant
 d) Variables in this experiment

2. Why did the scientists measure growth in comparison to the control? Why is this better than simply listing the amount of growth per trial?

3. Provide evidence from the trials to verify the claim that the bacteria are photosynthetic. Additionally, provide evidence that would suggest the bacteria do not rely on photosynthesis.

4. What inference can be drawn based on Experiments 1, 2, and 3?

5. Which logical conclusion can be formed from the data presented? Explain your prediction by pulling evidence from the passage.

6. How do the designs of Experiments 1 and 3 differ in terms of procedure?

Passage 6: Eutrophication

1. If not stated, what is the
 a) Control
 b) Constant
 c) Variables in this experiment

2. What inference can be drawn based on Experiments 1 and 2?

3. A microbiologist has determined that the CO₂ levels in the first experiment should remain constant after the first day. Was this hypothesis verified? Explain,
Many bacteria contain plasmids (small, circular DNA molecules). Plasmids can be transferred from one bacterium to another. For this to occur, the plasmid replication (produces a linear copy of itself). The relative position of the genes is the same on the original plasmid and on the linear copy, except that the two ends of the linear copy do not immediately connect.

While replication is occurring, one end of the linear copy leaves the donor bacterium and enters the recipient bacterium. Thus, the order in which the genes are replicated is the same as the order in which they are transferred.

Unless this process is interrupted, the entire plasmid is transferred, and it two ends connect in the recipient bacterium.

Our study is studied, the way in which six genes (F, X, R, S, A, T) on a specific plasmid were donated by a type of bacterium (see the figure). The students determined that the entire plasmid is transferred in 99 min and that the rate of transformation is constant. They also determined that the genes are evenly spaced around the plasmid so that one gene is transferred every 15 min. They disagreed, however, about the order in which the genes are replicated and thus transferred. Four models are presented.

Student 1

Replication always begins between Gene F and Gene G. Gene F is replicated first and Gene G is replicated last.

Student 2

Replication always begins between Gene R and Gene X. However, the direction of replication varies. If Gene X is replicated first, Gene X is replicated last. Conversely, if Gene F is replicated first, Gene F is replicated last.

Student 3

Replication can begin between any two genes. Replication proceeds around the plasmid in a clockwise direction. Thus, if Gene R is replicated first, Gene A is replicated second, and Gene X is replicated last.
During prophase I of meiosis, homologous chromosomes frequently exchange segments in a process called crossing over. As a result, genes on homologous chromosomes recombine, forming new allele combinations along chromosomes (see Figure 1).

![Diagram of crossing over between homologous chromosomes]

Figure 1.

Because the frequency of recombination (RF) can be used to estimate the map distance between genes on a chromosome, the probability of multiple crossovers increasing as the map distance between 2 genes increases, resulting in RF values that underestimate map units. To compensate for this effect, researchers use a mapping function to better estimate the map distance between 2 genes based on their RF (see Figure 2).

![Graph showing relationship between RF and map distance]

Figure 2.

Four researchers performed a series of experiments to determine the RF for various pairs of genes on a chromosome. They then used the mapping function to determine the map distance between each pair. The results appear in Table 1.

<table>
<thead>
<tr>
<th>Genes</th>
<th>RF</th>
<th>Map distance (mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>0.165</td>
<td>20</td>
</tr>
<tr>
<td>B and C</td>
<td>0.226</td>
<td>30</td>
</tr>
<tr>
<td>A and D</td>
<td>0.122</td>
<td>14</td>
</tr>
</tbody>
</table>

Each of the 4 researchers then proposed a model that was consistent with the results in Table 1. Each model shows how the genes might be located along the chromosome (see Figure 3). Each model correctly assumes the lengths of the genes are short enough that they can be ignored when calculating the map distance between genes.

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D A B</td>
</tr>
<tr>
<td>2</td>
<td>A' D B' C</td>
</tr>
<tr>
<td>3</td>
<td>D C A B</td>
</tr>
<tr>
<td>4</td>
<td>C A D B</td>
</tr>
</tbody>
</table>

Figure 3.

Later a fifth researcher working with the same chromosome and the same genes determined that the RF for Genes A and C is 0.09L.

GO ON TO THE NEXT PAGE.
A polypeptide molecule is a chain of amino acids. A protein consists of 1 or more polypeptides. A protein's shape is described by 3 or 4 levels of structure:

1. The primary structure of a protein is the sequence of amino acids in each polypeptide.

2. The secondary structure of a protein is the local folding patterns within short segments of each polypeptide due to hydrogen bonding.

3. The tertiary structure of a protein is the folding patterns that result from interactions between amino acid side chains (parts of an amino acid) in each polypeptide. These folding patterns generally occur across the protein's secondary structure.

4. The quaternary structure of a protein is the folding into more than 1 folded polypeptide.

A protein can adopt different shapes, and each shape has a relative energy. Lower-energy shapes are more stable than higher-energy shapes, an example of a protein's primary structure. A protein's lowest-energy shape is determined by its primary structure. Any other shape would be unstable, because they require additional energy to form. These local structures may be different than the local structures associated with hydrogen bonds, which are stabilized by the protein's low-energy shapes. After synthesis, these structures persist, trapping the protein in an active shape that has a relative energy lower than its lowest-energy shape.

Scientist 1

The active shape of a protein is dependent upon its primary structure. However, a protein's active shape may also depend on its process of synthesis, the order in which the amino acids were bonded together. As synthesis occurs, stable, local structures form with hydrogen bonding. These local structures may be different than the local structures associated with hydrogen bonds, which are stabilized by the protein's lowest-energy shape. After synthesis, these structures persist, trapping the protein in an active shape that has a relative energy lower than its lowest-energy shape.
Tomato plants grow poorly in high-salt environments. This effect is caused by 2 processes:

- A net movement of H$_2$O between the cytoplasm of the plants' cells and the environment via osmosis
- An increase in the cytoplasmic Na$^+$ concentration

The plant *Arabidopsis thaliana* carries a gene, *AtNHX1*. The product of this gene, VAC, facilitates uptake of cytoplasmic Na$^+$ by the plant's vacuoles.

A researcher created 4 genetically identical lines of tomato plants (L1-L4). An *AtNHX1* gene from *Arabidopsis thaliana* was isolated and 2 identical copies of this gene were incorporated into L1's genome. This process was repeated with L2 and L3 using a different *AtNHX1* allele for each line, so that L1, L2; and L3 had different geno- types for *AtNHX1*. The researcher then did an experiment.

Experiment

Fifty seedlings from each of the 4 lines were grown in 10 L of nutrient solution for 80 days. The 10 L nutrient solution contained H$_2$O, 12 g of fertilizer, and 3 g of NaCl. The nutrient solution was replaced every 5 days. After 80 days, average height, average mass (without fruit), and average fruit mass (per plant) were measured (see Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 g of NaCl/10 L nutrient solution</td>
</tr>
<tr>
<td>Line</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L4</td>
</tr>
</tbody>
</table>

This process was repeated except the 10 L nutrient solution contained 60 g of NaCl instead of 3 g of NaCl (see Table 2).

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 g of NaCl/10 L nutrient solution</td>
</tr>
<tr>
<td>Line</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L4</td>
</tr>
</tbody>
</table>

Tables:1-3 adapted from Hong-Xia Zhang and Eduardo Blumwald, "Transgenic Salt-Tolerant Tomato Plants Accumulate Salt in Foliage but Not in Fruit," @2021 by Nature Publishing Group.
Interpreting a Pair of Bar Graphs
How Much Does Camouflage Affect Predation on Mice by Owls with and without Moonlight?

D. W. Kaufman investigated the effect of prey camouflage on predation. Kaufman tested the hypothesis that the amount of contrast between the coat color of a mouse and the color of its surroundings would affect the rate of nighttime predation by owls. He also hypothesized that the color contrast would be affected by the amount of moonlight. In this exercise, you will analyze data from his owl-mouse predation studies.

How the Experiment Was Done

- Pairs of mice (*Peromyscus polionotus*) with different coat colors, one light brown and one dark brown, were released simultaneously into an enclosure that contained a hungry owl.
- The researcher recorded the color of the mouse that was first caught by the owl. If the owl did not catch either mouse within 15 minutes, the test was recorded as a zero.
- The release trials were repeated multiple times in enclosures with either a dark-colored soil surface or a light-colored soil surface.
- The presence or absence of moonlight during each assay was recorded.
Data from the Experiment

First, make sure you understand how the graphs are set up. Graph A shows data from the light-colored soil enclosure and graph B from the dark-colored enclosure, but in all other respects the graphs are the same.

Interpret the Data

(a) There is more than one independent variable in these graphs. What are the independent variables, the variables that were tested by the researcher? Which axis of the graphs has the independent variables?

(b) What is the dependent variable, the response to the variables being tested? Which axis of the graphs has the dependent variable?
2. (a) How many dark brown mice were caught in the light-colored soil enclosure on a moonlit night? (b) How many dark brown mice were caught in the dark-colored soil enclosure on a moonlit night? (c) On a moonlit night, would a dark brown mouse be more likely to escape predation by owls on dark- or light-colored soil? Explain your answer.

3. (a) Is a dark brown mouse on dark-colored soil more likely to escape predation under a full moon or with no moon? (b) A light brown mouse on light-colored soil? Explain.
4. (a) Under which conditions would a dark brown mouse be most likely to escape predation at night? (b) A light brown mouse?

5. (a) What combination of independent variables led to the highest predation level in enclosures with light-colored soil?

(b) What combination of independent variables led to the highest predation level in enclosures with dark-colored soil?

(c) What relationship, if any, do you see in your answers to parts (a) and (b)?

6. What conditions are most deadly for both light brown and dark brown mice?

7. Combining the data shown in both graphs, estimate the total number of mice caught in moonlight versus no-moonlight conditions. Which condition is optimal for predation by the owl on mice? Explain your answer.
Calibrating a Standard Radioactive Isotope Decay Curve

When Did Neanderthals Become Extinct?

- Neanderthals (*Homo neanderthalensis*) were living in Europe by 350,000 years ago, perhaps coexisting with early *Homo sapiens* in parts of Eurasia for hundreds or thousands of years.
- Researchers sought to more accurately determine the extent of their overlap by pinning down when Neanderthals became extinct.
- They used carbon-14 dating to determine the age of a Neanderthal fossil from the most recent (uppermost) archeological layer containing Neanderthal bones.
- In this exercise you will calibrate a standard carbon-14 decay curve and use it to determine the age of this Neanderthal fossil.
- The age will help you approximate the last time the two species may have coexisted at the site where this fossil was collected.
How the Experiment Was Done

- Carbon-14 (14C) is a radioactive isotope of carbon that decays to 14N at a constant rate. 14C is present in the atmosphere in small amounts at a constant ratio with both 13C and 12C, two other isotopes of carbon.
- When carbon is taken up from the atmosphere by a plant during photosynthesis, 12C, 13C, and 14C isotopes are incorporated into the plant in the same proportions in which they were present in the atmosphere.
- These proportions remain the same in the tissues of an animal that eats the plant. While an organism is alive, the 14C in its body constantly decays to 14N but is constantly replaced by new carbon from the environment.
- Once an organism dies, it stops taking in new 14C but the 14C in its tissues continues to decay, while the 12C in its tissues remains the same because it is not radioactive and does not decay.
- Thus, scientists can calculate how long the pool of original 14C has been decaying in a fossil by measuring the ratio of 14C to 12C and comparing it to the ratio of 14C to 12C present originally in the atmosphere.
- The fraction of 14C in a fossil compared to the original fraction of 14C can be converted to years because we know that the half-life of 14C is 5,730 years—in other words, half of the 14C in a fossil decays every 5,730 years.

Data from the Experiment

- The researchers found that the Neanderthal fossil had approximately 0.0078 (or, in scientific notation, 7.8 * 10^-3) as much 14C as the atmosphere.
- The questions will guide you through translating this fraction into the age of the fossil.
Interpret the Data

1. A standard graph of radioactive isotope decay is shown at the top of the right column. The graph line shows the fraction of the radioactive isotope over time (before present) in units of half-lives.

 - Recall that a half-life is the amount of time it takes for half of the radioactive isotope to decay. Labeling each data point with the corresponding fractions will help orient you to this graph. Draw an arrow to the data point for half-life = 1 and write the fraction of 14C that will remain after one half-life.
 - Calculate the fraction of 14C remaining at each half-life and write the fractions on the graph near arrows pointing to the data points.
 - Convert each fraction to a decimal number and round off to a maximum of three significant digits (zeros at the beginning of the number do not count as significant digits).
 - Also write each decimal number in scientific notation.

Interpret the Data

2. Recall that 14C has a half-life of 5,730 years. To calibrate the x-axis for 14C decay, write the time before present in years below each half-life.
Interpret the Data

3. The researchers found that the Neanderthal fossil had approximately 0.0078 as much 14C as found originally in the atmosphere.
 (a) Using the numbers on your graph, determine how many half-lives have passed since the Neanderthal died.
 (b) Using your 14C calibration on the x-axis, what is the approximate age of the Neanderthal fossil in years (round off to the nearest thousand)?
 (c) Approximately when did Neanderthals become extinct according to this study?
 (d) The researchers cite evidence that modern humans (H. sapiens) became established in the same region as the last Neanderthals approximately 39,000-42,000 years ago. What does this suggest about the overlap of Neanderthals and modern humans?

Interpret the Data

4. Carbon-14 dating works for fossils up to about 75,000 years old; fossils older than that contain too little 14C to be detected. Most dinosaurs went extinct 65.5 million years ago.
 (a) Can 14C be used to date dinosaur bones? Explain.
 (b) Radioactive uranium-235 has a half-life of 704 million years. If it was incorporated into dinosaur bones, could it be used to date the dinosaur fossils? Explain.
How Does the Carbonate Ion Concentration of Seawater Affect the Calcification Rate of a Coral Reef?

- Scientists predict that acidification of the ocean due to higher levels of atmospheric CO2 will lower the concentration of dissolved carbonate ions, which living corals use to build calcium carbonate reef structures.
- In this exercise, you will analyze data from a controlled experiment that examined the effect of carbonate ion concentration ([CO$_3^{2-}$]) on calcium carbonate deposition, a process called calcification.
How the Experiment Was Done

• The Biosphere 2 aquarium in Arizona contains a large coral reef system that behaves like a natural reef.

• For several years, a group of researchers measured the rate of calcification by the reef organisms and examined how the calcification rate changed with differing amounts of dissolved carbonate ions in the seawater.

Data from the Experiment

• The black data points in the graph form a scatter plot. The red line, known as a linear regression line, is the best fitting straight line for these points.
Interpret the Data

• 1. When presented with a graph of experimental data, the first step in analysis is to determine what each axis represents.

• (a) In words, explain what is being shown on the x-axis. Be sure to include the units.

• (b) What is being shown on the y-axis (including units)?

Interpret the Data

• (c) Which variable is the independent variable—the variable that was \textit{manipulated} by the researchers?

• (d) Which variable is the dependent variable—the variable that responded to or depended on the treatment, which was \textit{measured} by the researchers?
Interpret the Data

• 2. Based on the data shown in the graph, describe in words the relationship between carbonate ion concentration and calcification rate.

• 3. (a) If the seawater carbonate ion concentration is 270 µmol/kg, what is the approximate rate of calcification, and approximately how many days would it take 1 square meter of reef to accumulate 30 mmol of calcium carbonate (CaCO₃)?

(b) If the seawater carbonate ion concentration is 250 µmol/kg, what is the approximate rate of calcification, and approximately how many days would it take 1 square meter of reef to accumulate 30 mmol of calcium carbonate?

(c) If carbonate ion concentration decreases, how does the calcification rate change, and how does that affect the time it takes coral to grow?

Interpret the Data

• 4. (a) Referring to the equations in Figure 3.11, determine which step of the process is measured in this experiment.

(b) Are the results of this experiment consistent with the hypothesis that increased atmospheric [CO₂] will slow the growth of coral reefs? Why or why not?
• DNA and polypeptide sequences from closely related species are more similar to each other than are sequences from more distantly related species.

• In this exercise, you will look at amino acid sequence data for the polypeptide chain of hemoglobin, often called globin.

• You will then interpret the data to hypothesize whether the monkey or the gibbon is more closely related to humans.
How Such Experiments Are Done

- Researchers can isolate the polypeptide of interest from an organism and then determine the amino acid sequence. More frequently, the DNA of the relevant gene is sequenced, and the amino acid sequence of the polypeptide is deduced from the DNA sequence of its gene.

Data from the Experiments

- In the data below, the letters give the sequence of the 146 amino acids in p-globin from humans, rhesus monkeys, and gibbons.
- Because a complete sequence would not fit on one line here, the sequences are broken into three segments.
- The sequences for the three different species are aligned so that you can compare them easily. For example, you can see that for all three species, the first amino acid is V (valine) and the 146th amino acid is H (histidine).

<table>
<thead>
<tr>
<th>Pedel</th>
<th>Alignment of amino acid sequences of p-globin</th>
<th>Data from the Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>VJILTPEBKSA VTALWGBKVN DEVOOBALGR LLVVYPWTOR FFESFGDLST</td>
<td>In the data below, the letters give the sequence of the 146 amino acids in p-globin from humans, rhesus monkeys, and gibbons.</td>
</tr>
<tr>
<td>Monkey</td>
<td>VJILTPEBKNA VTTUGKYNV DEVOOBAULG LLINYFWTQR FFESF-GDLSS</td>
<td>Because a complete sequence would not fit on one line here, the sequences are broken into three segments.</td>
</tr>
<tr>
<td>Gibbon</td>
<td>VHTLTPEBKS A VTLWGBKVN DBVGGBALGR LLVVYPWTQR FFESFGDLST</td>
<td>The sequences for the three different species are aligned so that you can compare them easily. For example, you can see that for all three species, the first amino acid is V (valine) and the 146th amino acid is H (histidine).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pedel</th>
<th>Alignment of amino acid sequences of p-globin</th>
<th>Data from the Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>51P0AVMNPKV KAHGKK'JLGA FSDGLARLDN LKGTFALTSE LHCDICLHVDP</td>
<td>In the data below, the letters give the sequence of the 146 amino acids in p-globin from humans, rhesus monkeys, and gibbons.</td>
</tr>
<tr>
<td>Monkey</td>
<td>51PDAVMNPKV KAHGKK"V'LGAL FSDGLNHLDN LKGTFACLSD LHCDDKLHVDP</td>
<td>Because a complete sequence would not fit on one line here, the sequences are broken into three segments.</td>
</tr>
<tr>
<td>Gibbon</td>
<td>51PDAVMNPKV KAHGKKVGLA FSOOLARLDN LKGTFACLSE LRCDDKLHVDP</td>
<td>The sequences for the three different species are aligned so that you can compare them easily. For example, you can see that for all three species, the first amino acid is V (valine) and the 146th amino acid is H (histidine).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pedel</th>
<th>Alignment of amino acid sequences of p-globin</th>
<th>Data from the Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>101ENFRLLGVL VCVLARRFGK EFTPPVOAAY QKVVMVANA LAH..KYY</td>
<td>In the data below, the letters give the sequence of the 146 amino acids in p-globin from humans, rhesus monkeys, and gibbons.</td>
</tr>
<tr>
<td>Monkey</td>
<td>101ENF..KLGNVL VCVLARHPGK EFTPQVQMY QIKWAGVANA LAHKYR</td>
<td>Because a complete sequence would not fit on one line here, the sequences are broken into three segments.</td>
</tr>
<tr>
<td>Gibbon</td>
<td>101ENFRILNVL VCVLARHPGK BFTPQVQAY QIKWAGVANA LAHKYH</td>
<td>The sequences for the three different species are aligned so that you can compare them easily. For example, you can see that for all three species, the first amino acid is V (valine) and the 146th amino acid is H (histidine).</td>
</tr>
</tbody>
</table>
Interpret the Data

1. Scan the monkey and gibbon sequences, letter by letter, circling any amino acids that do not match the human sequence.
 - (a) How many amino acids differ between the monkey and the human sequences?
 - (b) Between the gibbon and human?

<table>
<thead>
<tr>
<th>Species</th>
<th>Similarity of Amino Acid Sequence of β-globin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>VIILTPEEKSA VTALWGKVN V DGVDEEOQALGR LLVYVWTOR FLFESFGDLST</td>
</tr>
<tr>
<td>Monkey</td>
<td>VIILTPEEKNA VTTTLWGKVNL V DGVDEEOQALGR LLVYVWTOR FLFESFGDLSS</td>
</tr>
<tr>
<td>Gibbon</td>
<td>VIILTPEEKSA VTALWGKVN V DGVDEEOQALGR LLVYVWTOR FLFESFGDLST</td>
</tr>
<tr>
<td>Human</td>
<td>SPDAVMGNPKV IIARGKKVLGA PGOOALILDN LGKTFATLSE LHCDKLIVDP</td>
</tr>
<tr>
<td>Monkey</td>
<td>51SIPDAVMGNPKV IIARGKKVLGA PGOOALILDN LGKTFATLSE LHCDKLIVDP</td>
</tr>
<tr>
<td>Gibbon</td>
<td>SIIPDAVMGNPKV IIARGKKVLGA PGOOALILDN LGKTFATLSE LHCDKLIVDP</td>
</tr>
<tr>
<td>Human</td>
<td>101 ENFRLLLGNVL VCVLAHFFGK ETF?PVQAAY QKVAVGIANA LAHKYH</td>
</tr>
<tr>
<td>Monkey</td>
<td>101 ENFRLGLGNVL VCVLAHFFGK ETFQPVQAAY QKVAVGIANA LAHKYH</td>
</tr>
<tr>
<td>Gibbon</td>
<td>101 ENFRLGNVL VCVLAHFFGK ETFQPVQAAY QKVAVGIANA LAHKYH</td>
</tr>
</tbody>
</table>

2. For each nonhuman species, what percent of its amino acids are identical to the human sequence of β-globin?

3. Based on these data alone, state a hypothesis for which of these two species is more closely related to humans. What is your reasoning?

4. What other evidence could you use to support your hypothesis?
How Much New Cytoplasm and Plasma Membrane Are Made by a Growing Yeast Cell?

- The unicellular yeast *Saccharomyces cerevisiae* divides by budding off a small new cell that then grows to full size (see the yeast cells).
- During its growth, the new cell synthesizes new cytoplasm, which increases its volume, and new plasma membrane, which increases its surface area.
- In this exercise, you will use a scale bar to determine the sizes of a mature parent yeast cell and a cell budding from it.
- You will then calculate the volume and surface area of each cell.
- You will use your calculations to determine how much cytoplasm and plasma membrane the new cell needs to synthesize to grow to full size.
Interpret the Data

1. Examine the micrograph of the yeast cells. The scale bar under the photo is labeled 1 µm. The scale bar works in the same way as a scale on a map, where, for example, 1 inch equals 1 mile.

 - In this case the bar represents one thousandth of a millimeter. Using the scale bar as a basic unit, determine the diameter of the mature parent cell and the new cell.

 - Start by measuring the scale bar and then the diameter of each cell.
 - The units you use are irrelevant, but working in millimeters is convenient.
 - Divide each diameter by the length of the scale bar and then multiply by the scale bar's length value to give you the diameter in micrometers.

2. The shape of a yeast cell can be approximated by a sphere.

 - (a) Calculate the volume of each cell using the formula for the volume of a sphere:

 \[V = \frac{4}{3} \pi r^3 \]

 - Note that \(\pi \) (the Greek letter pi) is a constant with an approximate value of 3.14, \(d \) stands for diameter, and \(r \) stands for radius, which is half the diameter.

 - (b) How much new cytoplasm will the new cell have to synthesize as it matures?

 - To determine this, calculate the difference between the volume of the full-sized cell and the volume of the new cell.
3. As the new cell grows, its plasma membrane needs to expand to contain the increased volume of the cell.

(a) Calculate the surface area of each cell using the formula for the surface area of a sphere: \(A = 4\pi r^2 \).

(b) How much area of new plasma membrane will the new cell have to synthesize as it matures?

4. When the new cell matures, it will be approximately how many times greater in volume and how many times greater in surface area than its current size?
Is Glucose Uptake into Cells Affected by Age?

- Glucose, an important energy source for animals, is transported into cells by facilitated diffusion using protein carriers.
- In this exercise, you will interpret a graph with two sets of data from an experiment that examined glucose uptake over time in red blood cells from guinea pigs of different ages.
- You will determine if the age of the guinea pigs affected their cells’ rate of glucose uptake.

How the Experiment Was Done

- Researchers incubated guinea pig red blood cells in a 300 mM (millimolar) radioactive glucose solution at pH 7.4 at 25°C.
- Every 10 or 15 minutes, they removed a sample of cells and measured the concentration of radioactive glucose inside those cells.
- The cells came from either a 15-day-old or 1-month-old guinea pig.
Data from the Experiment

• When you have multiple sets of data, it can be useful to plot them on the same graph for comparison.

• In the graph here, each set of dots (of the same color) forms a scatter plot, in which every data point represents two numerical values, one for each variable.

• For each data set, a curve that best fits the points has been drawn to make it easier to see the trends.

Interpret the Data

• 1. First make sure you understand the parts of the graph.

• (a) Which variable is the independent variable—the variable controlled by the researchers?

• (b) Which variable is the dependent variable—the variable that depended on the treatment and was measured by the researchers?

• (c) What do the red dots represent? (d) the blue dots?
Academic Honesty

A. High integrity and academic honesty is expected. Students should not do anything that would bring their integrity into question.

B. All assessments (homework, labs, quizzes, exams, projects, etc.) are expected to be completed only by the student.

C. Students MUST consult with instructor before using ANY internet site to study for a quiz, test or exam. This includes, but not limited to, sites like QUIZLET©

D. Collaboration and teamwork may be allowed on homework with prior approval from instructor; however, individual work must always be distinctly original from the lab partners’ work or zero credit will be earned.

E. ALL papers must be emailed to the instructor and second copy turned in as a hard copy.

F. Always properly cite and credit sources that are not your own (text, data, pictures, etc.).

G. Copying work, full or in part, is in violation of the academic honesty policies and students sharing testing information between classes are also in violation of the academic honesty policy.

H. DISHONESTY is not tolerated and may result in a "0" on that test/assignment, a referral, and removal from the Honor Society (and/or equivalent school organizations), contact to home and possibly further disciplinary measures as per school/district policies.

I. Students copying and students allowing others to copy their work are both academically dishonest. Do not put your classmates in an uncomfortable position by asking to copy.

J. Instructor reserves the right to modify or add new directives to this, either verbally in class or in writing without prior notice to students.

K. Students will write the following statement on every assignment, test, or project turned in:

Pledge

On my honor, I have neither given nor received unauthorized aid on this assignment.

Please read and sign below the following

"I pledge to maintain a high level of respect and integrity as a student representing White station High School. I understand and will uphold the Honor Code in letter and spirit to help our school advance authentic learning. I will not lie, cheat, plagiarize or be complicit with those who do. I will encourage fellow students who commit honor offenses to acknowledge such offenses to their teacher. I make this pledge in the spirit of honor and trust."

Student Signature

CLASS MATERIALS

For the classroom

1. **$40 lab supplies - essential**
 or
 All of the following:

2. **CS4 lab supplies:**
 F...AA(flSq.?1Y)
 b)...•...••Mfl.(l;> pys91ly)

 a) La...g...V
 i)...A1 if n rl l A;8...Jsm l ll
 b) las,ttir1 ltsl "lyF(r11 cji um)"
 i)...fast; n m l :lh.(J",f }
 d) l st n m switnJJ- (extrill g)

Donations (thank you)

1. Large box of tissue
2. Sanitizing wipes for desks

For students to keep

Microsoft Office© applications will be the primary software applications used. Adequate computer resources are available in the classroom as well as throughout the school.